Insights into the structural determinants of substrate specificity and activity in mouse aldehyde oxidases
详细信息    查看全文
  • 作者:Nuno M. F. S. A. Cerqueira (1)
    Catarina Coelho (2)
    Nat茅rcia F. Br谩s (1)
    Pedro A. Fernandes (1)
    Enrico Garattini (3)
    Mineko Terao (3)
    Maria Jo茫o Rom茫o (2)
    Maria Jo茫o Ramos (1)
  • 关键词:Mouse aldehyde oxidases ; Molybdo ; flavoenzyme ; Homology modeling ; Molecular dynamics
  • 刊名:Journal of Biological Inorganic Chemistry
  • 出版年:2015
  • 出版时间:March 2015
  • 年:2015
  • 卷:20
  • 期:2
  • 页码:209-217
  • 全文大小:1,655 KB
  • 参考文献:1. Garattini E, Mendel R, Rom茫o MJ, Wright R, Terao M (2003) Biochem J 372:15鈥?2. doi:10.1042/BJ20030121 CrossRef
    2. Garattini E, Fratelli M, Terao M (2009) Hum Genomics 4:119鈥?30
    3. Kurosaki M, Bolis M, Fratelli M, Barzago MM, Pattini L, Perretta G, Terao M, Garattini E (2013) Cell Mol Life Sci 70:1807鈥?830. doi:10.1007/s00018-012-1229-5 CrossRef
    4. Terao M, Kurosaki M, Demontis S, Zanotta S, Garattini E (1998) Biochem J 332(Pt 2):383鈥?93
    5. Calzi ML, Raviolo C, Ghibaudi E, de Gioia L, Salmona M, Cazzaniga G, Kurosaki M, Terao M, Garattini E (1995) J Biol Chem 270:31037鈥?1045 CrossRef
    6. Garattini E, Fratelli M, Terao M (2008) Cell Mol Life Sci 65:1019鈥?048. doi:10.1007/s00018-007-7398-y CrossRef
    7. Kurosaki M, Terao M, Barzago MM, Bastone A, Bernardinello D, Salmona M, Garattini E (2004) J Biol Chem 279:50482鈥?0498. doi:10.1074/jbc.M408734200 CrossRef
    8. Garattini E, Terao M (2011) Drug Metab Rev 43:374鈥?86. doi:10.3109/03602532.2011.560606 CrossRef
    9. Garattini E, Terao M (2012) Expert Opin Drug Metab Toxicol 8:487鈥?03. doi:10.1517/17425255.2012.663352 CrossRef
    10. Garattini E, Terao M (2013) Expert Opin Drug Discov 8:641鈥?54. doi:10.1517/17460441.2013.788497 CrossRef
    11. Hartmann T, Terao M, Garattini E, Teutloff C, Alfaro JF, Jones JP, Leimk眉hler S (2012) Drug Metab Dispos 40:856鈥?64. doi:10.1124/dmd.111.043828 CrossRef
    12. Coelho C, Mahro M, Trincao J, Carvalho ATP, Ramos MJ, Terao M, Garattini E, Leimk眉ehler S, Rom茫o MJ (2012) J Biol Chem 287:40690鈥?0702. doi:10.1074/jbc.M112.390419 CrossRef
    13. Sali A, Blundell TL (1993) J Mol Biol 234:779鈥?15. doi:10.1006/jmbi.1993.1626 CrossRef
    14. Fiser A, Do RK, Sali A (2000) Protein Sci 9:1753鈥?773. doi:10.1110/ps.9.9.1753 CrossRef
    15. Mart铆-Renom MA, Stuart AC, Fiser A, S谩nchez R, Melo F, Sali A (2000) Annu Rev Biophys Biomol Struct 29:291鈥?25. doi:10.1146/annurev.biophys.29.1.291 CrossRef
    16. Eswar N, Webb B, Marti-Renom MA, Madhusudhan MS, Eramian D, Shen MY, Pieper U, Sali A (2006) Curr Protoc Bioinform. Chapter 5, Unit 5.6. doi:10.1002/0471250953.bi0506s15
    17. Shen MY, Sali A (2006) Protein Sci 15:2507鈥?524. doi:10.1110/ps.062416606 CrossRef
    18. Becke AD (1988) Phys Rev A 38:3098鈥?100 CrossRef
    19. Becke AD (1996) J Chem Phys 104:1040鈥?046 CrossRef
    20. Lee C, Yang W, Parr RG (1988) Phys Rev B Condens Matter 37:785鈥?89 CrossRef
    21. Neves RPP, Sousa SF, Fernandes PA, Ramos MJ (2013) J Chem Theory Comput 9:2718鈥?732 CrossRef
    22. Bayly CI, Cieplak P, Cornell W, Kollman PA (1993) J Phys Chem 97:10269鈥?0280 CrossRef
    23. Batsanov SS (2001) Inorg Mater 37:871鈥?85
    24. Carvalho AT, Teixeira AF, Ramos MJ (2013) J Comput Chem 34:1540鈥?548. doi:10.1002/jcc.23287 CrossRef
    25. Case DA, Darden TA, Cheatham TE, Simmerling CL, Wang J, Duke RE, Luo R, Walker RC, Zhang W, Merz KM, Roberts B, Hayik S, Roitberg A, Seabra G, Swails J, G枚tz AW, Kolossv谩ry I, Wong KF, Paesani F, Vanicek J, Wolf RM, Liu J, Wu X, Brozell SR, Steinbrecher T, Gohlke H, Cai Q, Ye X, Wang J, Hsieh MJ, Cui G, Roe DR, Mathews DH, Seetin MG, Salomon-Ferrer R, Sagui C, Babin V, Luchko T, Gusarov S, Kovalenko A, Kollman PA (2012) Amber 12. University of California, San Francisco
    26. Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C (2006) Proteins 65:712鈥?25. doi:10.1002/prot.21123 CrossRef
    27. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) J Comput Chem 25:1157鈥?174. doi:10.1002/jcc.20035 CrossRef
    28. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM Jr, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) J Am Chem Soc 117:5179鈥?197 CrossRef
    29. Bras NFB, Cerqueira NMFSA, Fernandes PA, Ramos MJ (2008) Int J Quantum Chem 108:2030鈥?040 CrossRef
    30. Gesto DS, Cerqueira NMFSA, Fernandes PA, Ramos MJ (2013) J Amer Chem Soc 135:7146鈥?158. doi:10.1021/ja310165u
    31. Mahro M, Br谩s NF, Cerqueira NM, Teutloff C, Coelho C, Rom茫o MJ, Leimk眉hler S (2013) PLoS One 8:e82285. doi:10.1371/journal.pone.0082285 CrossRef
    32. Izaguirre JA, Catarello DP, Wozniak JM, Skeel RD (2001) J Chem Phys 114:2090鈥?098 CrossRef
    33. Ryckaert JP, Ciccotti G, Berendsen HJC (1977) J Comput Phys 23:327鈥?41 CrossRef
    34. Essman U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) J Chem Phys 103:8577鈥?593 CrossRef
    35. Ribeiro JV, Tamames JA, Cerqueira NM, Fernandes PA, Ramos MJ (2013) Chem Biol Drug Des 82:743鈥?55. doi:10.1111/cbdd.12197 CrossRef
    36. Ribeiro JV, Cerqueira NMFSA, Moreira IS, Fernandes PA, Ramos MJ (2012) Theor Chem Acc 131:1271 CrossRef
    37. Vila R, Kurosaki M, Barzago MM, Kolek M, Bastone A, Colombo L, Salmona M, Terao M, Garattini E (2004) J Biol Chem 279:8668鈥?683. doi:10.1074/jbc.M308137200 CrossRef
  • 作者单位:Nuno M. F. S. A. Cerqueira (1)
    Catarina Coelho (2)
    Nat茅rcia F. Br谩s (1)
    Pedro A. Fernandes (1)
    Enrico Garattini (3)
    Mineko Terao (3)
    Maria Jo茫o Rom茫o (2)
    Maria Jo茫o Ramos (1)

    1. UCIBIO@REQUIMTE, Departamento de Qu铆mica e Bioqu铆mica, Faculdade de Ci锚ncias, Universidade do Porto, 4169-007, Porto, Portugal
    2. UCIBIO@REQUIMTE, Departamento de Qu铆mica, Faculdade de Ci锚ncias e Tecnologia, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal
    3. Laboratory of Molecular Biology, IRCCS/Istituto di Ricerche Farmacologiche Mario Negri, via La Masa 19, 20156, Milano, Italy
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Biochemistry
    Microbiology
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-1327
文摘
In this work, a combination of homology modeling and molecular dynamics (MD) simulations was used to investigate the factors that modulate substrate specificity and activity of the mouse AOX isoforms: mAOX1, mAOX2 (previously mAOX3l1), mAOX3 and mAOX4. The results indicate that the AOX isoform structures are highly preserved and even more conserved than the corresponding amino acid sequences. The only differences are at the protein surface and substrate-binding site region. The substrate-binding site of all isoforms consists of two regions: the active site, which is highly conserved among all isoforms, and a isoform-specific region located above. We predict that mAOX1 accepts a broader range of substrates of different shape, size and nature relative to the other isoforms. In contrast, mAOX4 appears to accept a more restricted range of substrates. Its narrow and hydrophobic binding site indicates that it only accepts small hydrophobic substrates. Although mAOX2 and mAOX3 are very similar to each other, we propose the following pairs of overlapping substrate specificities: mAOX2/mAOX4 and mAOX3/mAXO1. Based on these considerations, we propose that the catalytic activity between all isoforms should be similar but the differences observed in the binding site might influence the substrate specificity of each enzyme. These results also suggest that the presence of several AOX isoforms in mouse allows them to oxidize more efficiently a wider range of substrates. This contrasts with the same or other organisms that only express one isoform and are less efficient or incapable of oxidizing the same type of substrates.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700