Relational mechanics as a gauge theory
详细信息    查看全文
  • 作者:Rafael Ferraro
  • 关键词:Relational mechanics ; Mach’s principle ; Shape ; dynamics
  • 刊名:General Relativity and Gravitation
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:48
  • 期:2
  • 全文大小:555 KB
  • 参考文献:1.Alexander, H.G. (ed.): The Leibniz-Clarke Correspondence Together with Extracts from Newton’s Principia and Opticks. Manchester University Press, Manchester (1956)
    2.Mach, E.: Die Mechanik in ihrer Entwicklung. Historisch-kritisch dargestellt (F.A. Brockhaus: Leipzig, 1883) The Science of Mechanics: A Critical and Historical Account of Its Development. The Open Court Publishing Co.: Chicago (1893)
    3.Einstein, A.: The Meaning of Relativity. Princeton University Press, Princeton (1922)CrossRef MATH
    4.Reissner, H.: Phys. Z. 15, 371–375 (1914) (English translation in Ref. 8)
    5.Schrödinger, E.: Ann. Phys. 382, 325–336 (1925) (English translation in Ref. 8)
    6.Barbour, J.B.: Nuovo Cim. B 26, 16–22 (1975)CrossRef ADS
    7.Barbour, J.B., Bertotti, B.: Nuovo Cim. B 38, 1–27 (1977)CrossRef ADS
    8.Barbour, J.B., Pfister H. (eds.): Einstein Studies, vol. 6: Mach’s Principle: From Newton’s Bucket to Quantum Gravity. Birkhäuser: Boston (1995)
    9.Barbour, J.B., Bertotti, B.: Proc. R. Soc. Lond. A 382, 295–306 (1982)CrossRef ADS MathSciNet MATH
    10.Barbour, J.: Class. Quantum Gravity 20, 1543–1570 (2003)CrossRef ADS MathSciNet MATH
    11.Gryb, S.: Phys. Rev. D 80, 024018 (2009)CrossRef ADS MathSciNet
    12.Ehlers, J.: In: Mehra, J. (ed.) The Physicist’s Conception of Nature. Reidel: Dordrecht (1973)
    13.Lynden-Bell, D.: In: Warner, B. (ed.) Variable Stars and Galaxies (in honour of M.W. Feast), ASP Conference Series 30 (1992)
    14.Lynden-Bell, D.: In: Barbour, J.B., Pfister, H. (eds.) Einstein Studies, vol. 6: Mach’s Principle: From Newton’s Bucket to Quantum Gravity. Birkhäuser: Boston (1995)
    15.Lynden-Bell, D., Katz, J.: Phys. Rev. D 52, 7322–7324 (1995)CrossRef ADS MathSciNet
    16.Dirac, P.A.M.: Lectures on Quantum Mechanics, Belfer Graduate School of Science. Yeshiva University, New York (1964)
    17.Henneaux, M., Teitelboim, C.: Quantization of Gauge Systems. Princeton University Press, Princeton (1992)MATH
    18.Friedman, M.: Foundations of Space-Time Theories: Relativistic Physics and Philosophy of Science. Princeton University Press, Princeton (1983)
    19.Brill, D., Cohen, J.M.: Phys. Rev. 143, 1011–1015 (1966)CrossRef ADS MathSciNet
    20.Pfister, H., Braun, K.H.: Class. Quantum Gravity 2, 909–918 (1985)CrossRef ADS MathSciNet
    21.Lanczos, C.: The Variational Principles of Mechanics. Dover Publications, New York (1986)MATH
    22.Sundermeyer, K.: Constrained Dynamics. Lectures Notes in Physics, vol. 169. Springer, Berlin (1982)
    23.Kuchař, K.V.: In: Kunstatter, G., Vincent, D., Williams, J. (eds.) Proceedings of the 4th. Canadian Conference on General Relativity and Relativistic Astrophysics. World Scientific: Singapore (1992)
    24.Beluardi, S.C., Ferraro, R.: Phys. Rev. D 52, 1963–1969 (1995)CrossRef ADS MathSciNet
    25.Mercati, F.: A Shape Dynamics Tutorial. arXiv:​1409.​0105 (2014)
    26.Anderson, E.: The problem of time and quantum cosmology in the relational particle mechanics arena. arXiv:​1111.​1472v3 (2011)
    27.Einstein, A.: Ann. Phys. 354, 769–822 (1916) (English translation In: H.A. Lorentz, A. Einstein, H. Minkowski, H. Weyl, The Principle of Relativity: A Collection of Original Memoirs on the Special and General Theory of Relativity. Dover Publications: New York (1952))
    28.Barbour, J., Koslowski, T., Mercati, F.: Class. Quantum Gravity 31, 155001 (2014)CrossRef ADS MathSciNet
  • 作者单位:Rafael Ferraro (1) (2)

    1. Instituto de Astronomía y Física del Espacio (IAFE, CONICET-UBA), Sucursal 28, Casilla de Correo 67, 1428, Buenos Aires, Argentina
    2. Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón I, 1428, Buenos Aires, Argentina
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Mathematical and Computational Physics
    Relativity and Cosmology
    Differential Geometry
    Quantum Physics
    Astronomy, Astrophysics and Cosmology
  • 出版者:Springer Netherlands
  • ISSN:1572-9532
文摘
Absolute space is eliminated from the body of mechanics by gauging translations and rotations in the Lagrangian of a classical system. The procedure implies the addition of compensating terms to the kinetic energy, in such a way that the resulting equations of motion are valid in any frame. The compensating terms provide inertial forces depending on the total momentum \(\mathbf{P}\), intrinsic angular momentum \(\mathbf{J}\) and intrinsic inertia tensor \(\mathbf{I}\). Therefore, the privileged frames where Newton’s equations are valid (Newtonian frames) are completely determined by the matter distribution of the universe (Machianization). At the Hamiltonian level, the gauge invariance leads to first class constraints that remove those degrees of freedom that make no sense once the absolute space has been eliminated. This reformulation of classical mechanics is entirely relational, since it is a dynamics for the distances between particles. It is also Machian, since the rotation of the rest of the universe produces centrifugal effects. It then provides a new perspective to consider the foundational ideas of general relativity, like Mach’s principle and the weak equivalence principle. With regard to the concept of time, the absence of an absolute time is known to be a characteristic of parametrized systems. Furthermore, the scale invariance of those parametrized systems whose potentials are inversely proportional to the squared distances can be also gauged by introducing another compensating term associated with the intrinsic virial G (shape-dynamics).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700