Comparative LCA of ethanol versus gasoline in Brazil using different LCIA methods
详细信息    查看全文
  • 作者:Otávio Cavalett (1)
    Mateus Ferreira Chagas (1)
    Joaquim E. A. Seabra (1) (2)
    Antonio Bonomi (1)
  • 关键词:Biorefinery ; Categories of impact ; Environmental impacts ; Life cycle impact assessment (LCIA) ; Midpoint modeling ; Single score ; Sugarcane
  • 刊名:The International Journal of Life Cycle Assessment
  • 出版年:2013
  • 出版时间:March 2013
  • 年:2013
  • 卷:18
  • 期:3
  • 页码:647-658
  • 全文大小:237KB
  • 参考文献:1. Bai Y, Luo L, van der Voet E (2010) Life cycle assessment of switchgrass-derived ethanol as transport fuel. Int J Life Cycle Assess 15:468-77 CrossRef
    2. Botha T, von Blottnitz H (2006) A comparison of the environmental benefits of bagasse-derived electricity and fuel ethanol on life-cycle basis. Energ Policy 34:2654-661 CrossRef
    3. Caneghem JV, Block C, Vandecasteele C (2010) Assessment of the impact on human health of industrial emissions to air: Does the result depend on the applied method? J Hazard Mater 184:788-97 CrossRef
    4. Cherubini F, Ulgiati S (2010) Crop residues as raw materials for biorefinery systems—a LCA case study. Appl Energ 87:47-7 CrossRef
    5. Dreyer LC, Niemann AL, Hauschild MZ (2003) Comparison of three different LCIA methods: EDIP97, CML2001 and Eco-indicator 99 e does it matter which one you choose? Int J Life Cycle Assess 8:191-00 CrossRef
    6. Finnveden G, Hauschild MZ, Ekvall T, Guinee J, Heijungs R, Hellweg S, Koehler A, Pennington D, Suh S (2009) Recent developments in life cycle assessment. J Environ Manage 91(1):1-1 CrossRef
    7. Frischknecht R, Steiner R, Jungbluth N (2009) The ecological scarcity method—eco-factors 2006: a method for impact assessment in LCA. Federal Office for the Environment FOEN, Zürich und Bern. www.bafu.admin.ch/publikationen/publikation/01031/index.html?lang=en. Accessed on 20 June 2011
    8. Goedkoop M, Spriensma R (2001) The Eco-indicator 99: A damage oriented method for life cycle impact assessment. PRé Consultants, Amersfoort. www.pre.nl/eco-indicator99. Accessed 22 June 2011
    9. Goedkoop M, Heijungs R, Huijbregts M, De Schryver AM, Struijs J, van Zelm R (2009) ReCiPe 2008: a life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level. First edition; Report I: Characterisation. www.leidenuniv.nl/cml/ssp/publications/recipe_characterisation.pdf. Accessed 13 June 2011
    10. González-García S, Moreira MT, Feijoo G (2010) Comparative environmental performance of lignocellulosic ethanol from different feedstocks. Renew Sustain Energy Rev 14:2077-085 CrossRef
    11. GREET, version 1.8d (2010) Greenhouse gases, regulated emissions, and energy use in transportation. Argonne National Laboratory: Argonne, IL, USA
    12. Guinée JB (ed) (2001) Life cycle assessment: an operational guide to the ISO standards; LCA in Perspective; Guide; Operational Annex to Guide. Centre for Environmental Science, Leiden University: The Netherlands
    13. Halleux H, Lassaux S, Renzoni R, Germain A (2008) Comparative life cycle assessment of two biofuels: ethanol from sugar beet and rapeseed methyl ester. Int J Life Cycle Assess 13(3):184-90 CrossRef
    14. Hauschild M, Potting J (2005) Spatial differentiation in life cycle impact assessment e the EDIP2003 methodology. Danish Ministry of the Environment. www2.mst.dk/udgiv/publications/2005/87-7614-579-4/pdf/87-7614-580-8.pdf. Accessed 15 June 2011
    15. ISO (1998) ISO Norm 14041: 1998. Environmental management—life cycle assessment. Goal and scope definition and inventory analysis. International Organization for Standardization, Geneva
    16. ISO (2006) ISO Norm 14044: 2006. Life cycle assessment. Requirements and guidelines. Environmental management. International Organization for Standardization, Geneva
    17. Jane CB, Norris G, Pennington D, Mckone TE (2002) TRACI e the tool for the reduction and assessment of chemical and other environmental impacts. J Indus Ecol 6:49-8 CrossRef
    18. Jolliet O, Margni M, Charles R, Humbert S, Payet J, Rebitzer G, Rosenbaum R (2003) IMPACT 2002+: a new life cycle impact assessment methodology. Int J Life Cycle Assess 8:324-30 CrossRef
    19. JRC (2010) ILCD Handbook: analysis of existing environmental impact assessment methodologies for use in life cycle assessment. Background document. http://lct.jrc.ec.europa.eu/pdf-directory/ILCD-Handbook-LCIA-Background-analysis-online-12March2010.pdf. Accessed 19 Oct 2011
    20. JRC (2011) ILCD handbook: recommendations for life cycle impact assessment in the European context. Background document. http://lct.jrc.ec.europa.eu/pdf-directory/ILCD%20Handbook%20Recommendations%20for%20Life%20Cycle%20Impact%20Assessment%20in%20the%20European%20context.pdf. Accessed 17 Feb 2012
    21. Luo L, van der Voet E, Huppes G (2009) Life cycle assessment and life cycle costing of bioethanol from sugarcane in Brazil. Renew Sust Energ Rev 13:1613-619 CrossRef
    22. Macedo IC (2005) Sugar cane’s energy—twelve studies on Brazilian sugar cane agribusiness and its sustainability. Berlendis & Vertecchia: UNICA, S?o Paulo
    23. Macedo IC, Seabra JEA, Silva JEAR (2008) Green house gases emissions in the production and use of ethanol from sugarcane in Brazil: the 2005/2006 averages and a prediction for 2020. Biomass Bioenerg 32:582-95 CrossRef
    24. Ometto AR, Hauschild MZ, Roma WNL (2009) Lifecycle assessment of fuel ethanol from sugarcane in Brazil. Int J Life Cycle Assess 14:236-47 CrossRef
    25. Pant R, Van Hoof G, Schowanek D, Feijtel TCJ, de Koning A, Hauschild M, Pennington DW, Olsen SI, Rosenbaum R (2004) Comparison between three different LCIA methods for aquatic ecotoxicity and a product environmental risk assessment e insights from a detergent case study within OMNIITOX. Int J Life Cycle Assess 9:295-06 CrossRef
    26. Pizzol M, Christensen P, Schmidt JH, Thomsen M (2011a) Impacts of “metals-on human health: a comparison between nine different methodologies for life cycle impact assessment (LCIA). J Clean Prod 19:646-56 CrossRef
    27. Pizzol M, Christensen P, Schmidt JH, Thomsen M (2011b) Eco-toxicological impact of “metals-on the aquatic and terrestrial ecosystem: a comparison between eight different methodologies for life cycle impact assessment (LCIA). J Clean Prod 19:687-98 CrossRef
    28. PRé Consultants (2011). SimaPro 7.3 Life Cycle Assessment software. Detailed information can be found on www.pre.nl
    29. Renou S, Thomas JS, Aoustin E, Pons MN (2008) Influence of impact assessment methods in wastewater treatment LCA. J Clean Prod 16:1098-105 CrossRef
    30. Renouf MA, Wegener MK, Pagan RJ (2010) Life cycle assessment of Australian sugarcane production with a focus on sugarcane growing. Int J Life Cycle Assess 15:927-37 CrossRef
    31. Renouf MA, Pagan RJ, Wegener MK (2011) Life cycle assessment of Australian sugarcane products with a focus on cane processing. Int J Life Cycle Assess 16:125-37 CrossRef
    32. Seabra JEA (2008) Avalia??o técnico-econ?mica de op??es para o aproveitamento integral da biomassa de cana no Brasil. Univerisidade Esdadual de Campinas (Doutorado), Faculdade de Engenharia Mecanica
    33. Seabra JEA, Tao L, Chum HL, Macedo IC (2010) A techno-economic evaluation of the effects of centralized cellulosic ethanol and co-products refinery options with sugarcane mill clustering. Biomass Bioenerg 34:1065-078 CrossRef
    34. Seabra JEA, Macedo IC, Chum HL, Faroni CE, Sarto CA (2011) Life cycle assessment of Brazilian sugarcane products: GHG emissions and energy use. Biofuels Bioprod Bioref 5(5):519-32 CrossRef
    35. Swiss Centre for Life Cycle Inventories (2009) Ecoinvent database. Version 2.0. December 2010. http://www.ecoinvent.ch/. Accessed 10 Aug 2011
    36. Udo de Haes HA, Finnveden G, Goedkoop M, Hauschild M, Hertwich EG, Hofstetter P, Jolliet O, Kl?pffer W, Krewitt W, Lindeijer EW, Müllerenk R, Olsen SI, Pennington DW, Potting J, Steen B (eds) (2002) Life-cycle impact assessment: striving towards best practice. SETAC Press, Pensacola, FL
    37. Uihlein A, Schebek L (2009) Environmental impacts of a lignocellulose feedstock biorefinery system: an assessment. Biomass Bioenerg 33:793-02 CrossRef
    38. UNICA (2011) Uni?o da Indústria de cana-de-a?úcar. Dados e Cota??es—Estatísticas: Produ??o brasileira de etanol. www.unica.com.br/dadosCotacao/estatistica/. Accessed 12 Aug 2011
    39. Walter A, Dolzan P, Quilodrán O, Oliveira JG, da Silva C, Piacente F, Segarstedt A (2011) Sustainability assessment of bio-ethanol production in Brazil considering land use change, GHG emissions and socio-economic aspects. Energy Policy 39(10):5703-716 CrossRef
    40. Zhou J, Chang VWC, Fane AG (2011) Environmental life cycle assessment of reverse osmosis desalination: the influence of different life cycle impact assessment methods on the characterization results. Desalination. doi:10.1016/j.desal.2011.04.066
  • 作者单位:Otávio Cavalett (1)
    Mateus Ferreira Chagas (1)
    Joaquim E. A. Seabra (1) (2)
    Antonio Bonomi (1)

    1. Laboratório Nacional de Ciência e Tecnologia do Bioetanol, CTBE, Caixa Postal 6170, 13083-970, Campinas, Brazil
    2. Faculdade de Engenharia Mecanica, Universidade Estadual de Campinas, Rua Mendeleyev 200, 13083-860, Campinas, Brazil
  • ISSN:1614-7502
文摘
Purpose The main objective of this study is to expand the discussion about how, and to what extent, the environmental performance is affected by the use of different life cycle impact assessment (LCIA) illustrated by the case study of the comparison between environmental impacts of gasoline and ethanol form sugarcane in Brazil. Methods The following LCIA methods have been considered in the evaluation: CML 2001, Impact 2002+, EDIP 2003, Eco-indicator 99, TRACI 2, ReCiPe, and Ecological Scarcity 2006. Energy allocation was used to split the environmental burdens between ethanol and surplus electricity generated at the sugarcane mill. The phases of feedstock and (bio)fuel production, distribution, and use are included in system boundaries. Results and discussion At the midpoint level, comparison of different LCIA methods showed that ethanol presents lower impacts than gasoline in important categories such as global warming, fossil depletion, and ozone layer depletion. However, ethanol presents higher impacts in acidification, eutrophication, photochemical oxidation, and agricultural land use categories. Regarding to single-score indicators, ethanol presented better performance than gasoline using ReCiPe Endpoint LCIA method. Using IMPACT 2002+, Eco-indicator 99, and Ecological Scarcity 2006, higher scores are verified for ethanol, mainly due to the impacts related to particulate emissions and land use impacts. Conclusions Although there is a relative agreement on the results regarding equivalent environmental impact categories using different LCIA methods at midpoint level, when single-score indicators are considered, use of different LCIA methods lead to different conclusions. Single-score results also limit the interpretability at endpoint level, as a consequence of small contributions of relevant environmental impact categories weighted in a single-score indicator.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700