Anaerobic Biological Treatment of Vinasse for Environmental Compliance and Methane Production
详细信息    查看全文
  • 作者:R. Albanez ; B. C. Chiaranda ; R. G. Ferreira
  • 关键词:AnSBBR ; Vinasse ; Biomethane ; Industrial reactor ; Organic load
  • 刊名:Applied Biochemistry and Biotechnology
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:178
  • 期:1
  • 页码:21-43
  • 全文大小:933 KB
  • 参考文献:1.Pant, D., & Adholeya, A. (2007). Biological approaches for treatment of distillery wastewater: a review. Bioresource Technology, 98, 2321–2334.CrossRef
    2.Moraes, B. S., Junqueira, T. L., Pavanello, L. G., Cavalett, A. O., Mantelatto, P. E., Bonomi, A., & Zaiat, M. (2014). Anaerobic digestion of vinasse from sugarcane biorefineries in Brazil from energy, environmental, and economic perspectives: profit or expense? Applied Energy, 113, 825–835.CrossRef
    3.Nishio, N., & Nakashimada, Y. (2007). Recent development of digestion process for energy recovery from wastes. Journal of Bioscience and Bioengineering, 103, 105–112.CrossRef
    4.Sheehan, G. J., & Greenfield, P. F. (1979). Utilisation, treatment and disposal of distillery wastewater. Water Research, 14, 257–277.CrossRef
    5.Bazúa, C. D., Cabrero, M. A., & Poggi, H. M. (1991). Vinasses biological treatment by anaerobic and aerobic processes: laboratory and pilot-plant testes. Bioresource Technology, 35, 87–93.CrossRef
    6.Vlissidis, A., & Zouboulis, A. I. (1992). Thermophilic anaerobic digestion of alcohol distillery wastewater. Bioresource Technology, 43, 131–140.CrossRef
    7.Wilkie, A. C., Riedesel, K. J., & Owens, J. M. (2000). Stillage characterization and anaerobic treatment of ethanol stillage from conventional and cellulosic feedstocks. Biomass and Bioenergy, 19, 63–102.CrossRef
    8.Onodera, T., Sase, S., Choeisai, P., Yoochatchaval, W., Sumino, H., Yamaguchi, T., Ebie, Y., Xu, K., Tomioka, N., Mizuochi, M., & Syutsubo, K. (2013). Development of a treatment system for molasses wastewater: the effects of cation inhibition on the anaerobic degradation process. Bioresource Technology, 131, 295–302.CrossRef
    9.Zaiat, M., Rodrigues, J. A. D., Ratusznei, S. M., Camargo, E. F. M., & Borzani, W. (2001). Anaerobic sequencing batch reactors for wastewater treatment: a developing technology. Applied Microbiology and Biotechnology, 55, 29–35.CrossRef
    10.Camargo, E. F. M., Ratusznei, S. M., Rodrigues, J. A. D., Zaiat, M., & Borzani, W. (2002). Treatment of low-strength wastewater using immobilized biomass in a sequencing batch external loop reactor: influence of the medium superficial velocity on the stability and performance. Brazilian Journal of Chemical Engineering, 19, 267–275.CrossRef
    11.Bergamo, C. M., Monaco, R., Ratusznei, S. M., Rodrigues, J. A. D., Zaiat, M., & Foresti, E. (2009). Effects of temperature at different organic loading levels on the performance of a fluidized-bed anaerobic sequencing batch bioreactor. Chemical Engineering and Processing, 48, 789–796.CrossRef
    12.Bezerra, R. A., Rodrigues, J. A. D., Ratusznei, S. M., Zaiat, M., & Foresti, E. (2009). Effects of feed time, organic loading and shock loads in the anaerobic whey treatment by an AnSBBR with circulation. Applied Biochemistry and Biotechnology, 157, 140–158.CrossRef
    13.Rodrigues, J. A. D., Ratusznei, S. M., Camargo, E. F. M., & Zaiat, M. (2003). Influence of agitation rate on the performance of an anaerobic sequencing batch reactor containing granulated biomass treating low-strength wastewater. Advances in Environmental Research, 7, 405–410.CrossRef
    14.Rodrigues, J. A. D., Pinto, A. G., Ratusznei, S. M., Zaiat, M., & Gedraite, R. (2004). Enhancement of the performance of an anaerobic sequencing batch reactor treating low strength wastewater through implementation of a variable stirring rate program. Brazilian Journal of Chemical Engineering, 21, 423–434.CrossRef
    15.Damasceno, L. H. S., Rodrigues, J. A. D., Ratusznei, S. M., Zaiat, M., & Foresti, E. (2008). Effect of mixing mode on the behavior of an ASBBR with immobilized biomass in the treatment of cheese whey. Brazilian Journal of Chemical Engineering, 25, 291–298.CrossRef
    16.Michelan, R., Zimmer, T. R., Rodrigues, J. A. D., Ratusznei, S. M., Moraes, D., Zaiat, M., & Foresti, E. (2009). Effect of impeller type and mechanical agitation on the mass transfer and power consumption aspects of ASBR operation treating synthetic wastewater. Journal of Environmental Management, 90, 1357–1364.CrossRef
    17.Novaes, L. F., Borges, L. O., Rodrigues, J. A. D., Ratusznei, S. M., Zaiat, M., & Foresti, E. (2010). Effect of fill time on the performance of pilot-scale ASBR and AnSBBR applied to sanitary wastewater treatment. Applied Biochemistry and Biotechnology, 162, 885–899.CrossRef
    18.Shizas, I., & Bagley, D. M. (2002). Improving anaerobic sequencing batch reactor performance by modifying operational parameters. Water Research, 36, 363–367.CrossRef
    19.Albanez, R., Canto, C. S. A., Ratusznei, S. M., Rodrigues, J. A. D., Zaiat, M., & Foresti, E. (2009). Feasibility of a sequencing reactor operated in batch and fed-batch mode applied to nitrification and denitrification processes. Revista de Química Teórica Y Aplicada - Afinidad, 66, 44–55.
    20.Novaes, L. F., Saratt, B. L., Rodrigues, J. A. D., Ratusznei, S. M., Moraes, D., Ribeiro, R., Zaiat, M., & Foresti, E. (2010). Effect of impeller type and agitation on the performance of pilot scale ASBR and AnSBBR applied to sanitary wastewater treatment. Journal of Environmental Management, 91, 1647–1656.CrossRef
    21.Oliveira, R. P., Ratusznei, S. M., Rodrigues, J. A. D., Zaiat, M., & Foresti, E. (2010). Interaction effects of organic load and cycle time in an ASBR applied to a personal care industry wastewater treatment. Journal of Environmental Management, 91, 2499–2504.CrossRef
    22.Rodrigues, J. A. D., Oliveira, R. P., Ratusznei, S. M., Zaiat, M., & Foresti, E. (2011). AnSBBR applied to a personal care industry wastewater treatment: effects of fill time, volume treated per cycle and organic load. Applied Biochemistry and Biotechnology, 163, 127–142.CrossRef
    23.Massé, D. I., & Masse, L. (2000). Treatment of slaughterhouse wastewater in anaerobic sequencing batch reactors. Canadian Agricultural Engineering, 42, 131–137.
    24.Chebel, F. X., Ratusznei, S. M., Rodrigues, J. A. D., Zaiat, M., & Foresti, E. (2006). Analysis of performance of an anaerobic sequential batch reactor submitted to increasing organic load with different influent concentrations and cycle lengths. Applied Biochemistry and Biotechnology, 133, 171–187.CrossRef
    25.Damasceno, L. H. S., Rodrigues, J. A. D., Ratusznei, S. M., Zaiat, M., & Foresti, E. (2007). Effects of feeding time and organic loading in an anaerobic sequencing batch biofilm reactor (ASBBR) treating diluted whey. Journal of Environmental Management, 85, 927–935.CrossRef
    26.Oliveira, R. P., Ghilardi, J. A., Ratusznei, S. M., Rodrigues, J. A. D., Zaiat, M., & Foresti, E. (2008). Anaerobic sequencing batch biofilm reactor applied to automobile industry wastewater treatment: volumetric loading rate and feed strategy effects. Chemical Engineering and Processing, 47, 1374–1383.CrossRef
    27.Friedl, G. F., Mockaitis, G., Rodrigues, J. A. D., Ratusznei, S. M., Zaiat, M., & Foresti, E. (2009). AnSBBR applied to organic matter and sulfate removal: interaction effect between feed strategy and COD/sulfate ratio. Applied Biochemistry and Biotechnology, 159, 95–109.CrossRef
    28.Oliveira, D. S., Prinholato, A. C., Ratusznei, S. M., Rodrigues, J. A. D., Zaiat, M., & Foresti, E. (2009). AnSBBR applied to the treatment of wastewater from a personal care industry: effect of organic load and fill time. Journal of Environmental Management, 90, 3070–3081.CrossRef
    29.Carvalhinha, P. P., Flôres, A., Ratusznei, S. M., Rodrigues, J. A. D., Zaiat, M., & Foresti, E. (2010). AnSBBR applied to the treatment of metalworking fluid wastewater: effect of organic and shock load. Applied Biochemistry and Biotechnology, 162, 1708–1724.CrossRef
    30.Yang, Y., Tsukahara, K., & Sawayama, S. (2008). Biodegradation and methane production from glycerol-containing synthetic wastes with fixed-bed bioreactor under mesophilic and thermophilic anaerobic conditions. Process Biochemistry, 43, 362–367.CrossRef
    31.Selma, V. C., Cotrim, L. H. B., Rodrigues, J. A. D., Ratusznei, S. M., Zaiat, M., & Foresti, E. (2010). ASBR applied to the treatment of biodiesel production effluent: effect of organic load and fill time on performance and methane production. Applied Biochemistry and Biotechnology, 162, 2365–2380.CrossRef
    32.Bezerra, R. A., Rodrigues, J. A. D., Ratusznei, S. M., Canto, C. S. A., & Zaiat, M. (2011). Effect of organic load on the performance and methane production of an AnSBBR treating effluent from biodiesel production. Applied Biochemistry and Biotechnology, 165, 347–368.CrossRef
    33.Lovato, G., Bezerra, R. A., Rodrigues, J. A. D., Ratusznei, S. M., & Zaiat, M. (2012). Effect of feed strategy on methane production and performance of an AnSBBR treating effluent from biodiesel production. Applied Biochemistry and Biotechnology, 166, 2007–2029.CrossRef
    34.Silva, R. C., Ratusznei, S. M., Rodrigues, J. A. D., & Zaiat, M. (2013). Anaerobic treatment of industrial biodiesel wastewater by an ASBR for methane production. Applied Biochemistry and Biotechnology, 170, 105–118.CrossRef
    35.Manssouri, M., Rodrigues, J. A. D., Ratusznei, S., & Zaiat, M. (2013). Effects of organic loading, influent concentration and feed time on biohydrogen production in a mechanically stirred AnSBBR treating sucrose based wastewater. Applied Biochemistry and Biotechnology, 171, 1832–1854.CrossRef
    36.Zaiat, M., Cabral, A. K. A., & Foresti, E. (1994). Horizontal-flow anaerobic immobilized sludge reactor for wastewater treatment: conception and performance evaluation. Brazilian Journal of Chemical Engineering, 11, 33–42.
    37.Standard Methods for the Examination of Water and Wastewater. (1995). APHA, AWWA, WPCF (19th ed.). Washington: American Public Health Association.
    38.Hoia, L. W. S., & Martincigh, B. S. (2013). Sugar cane plant fibres: separation and characterization. Industrial Crops and Products, 47, 1–12.CrossRef
    39.Mockaitis, G., Ratusznei, S. M., Rodrigues, J. A. D., Zaiat, M., & Foresti, E. (2006). Anaerobic whey treatment by a stirred sequencing batch reactor (ASBR): effects of organic loading and supplemented alkalinity. Journal of Environmental Management, 79, 198–206.CrossRef
    40.Bezerra, R. A., Rodrigues, J. A. D., Ratusznei, S. M., Zaiat, M., & Foresti, E. (2007). Whey treatment by AnSBBR with circulation: effects of organic loading, shock loads, and alkalinity supplementation. Applied Biochemistry and Biotechnology, 143, 257–275.CrossRef
    41.Balanço Energético Nacional (2013) https://​ben.​epe.​gov.​br , accessed on May/05/2014.
    42.Lide DR. (2005/2006) Handbook of chemistry and physics, 86th ed., CRC Press, New York.
    43.Perry, R. H., & Green, D. W. (1997). Perry’s chemical engineers’ handbook (70th ed.). New York: McGraw Hill.
    44.Nogueira, C. E. C., Souza, S. N. M., Micuanski, V. C., & Azevedo, R. L. (2015). Exploring possibilities of energy insertion from vinasse biogas in the energy matrix of Paraná State, Brazil. Renewable and Sustainable Energy Reviews, 48, 300–305.CrossRef
    45.Felder, R. M., & Rousseau, R. W. (2000). Elementary principles of chemical processes (3rd ed.). New York: John Wiley and Sons.
  • 作者单位:R. Albanez (1) (2)
    B. C. Chiaranda (2)
    R. G. Ferreira (2)
    A. L. P. França (2)
    C. D. Honório (2)
    J. A. D. Rodrigues (2)
    S. M. Ratusznei (2)
    M. Zaiat (1)

    1. Escola de Engenharia de São Carlos, Universidade de São Paulo (USP), Av. Trabalhador São-Carlense 400, CEP 13.566-590, São Carlos, SP, Brazil
    2. Escola de Engenharia Mauá, Instituto Mauá de Tecnologia (IMT), Praça Mauá 1, CEP 09.580-900, São Caetano do Sul, SP, Brazil
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biotechnology
    Biochemistry
  • 出版者:Humana Press Inc.
  • ISSN:1559-0291
文摘
The energy crisis resulted in increasing awareness that alternative sources of energy should be considered. During this time, Brazil implemented ethanol production from sugarcane as biofuel. However, during this process, large amounts of residues are generated, such as vinasse. This residue can be treated anaerobically to generate methane as a source of bioenergy with the use of sequencing batch reactors operated with immobilized biomass (AnSBBR). In this work, tests were conducted in an AnSBBR laboratory-scale reactor, and the main results regarding the kinetic model fitting and performance of substrate consumption (83 %), methane content in the biogas (77 %), applied organic load (5.54 g COD L−1 day−1), methane productivity (973 N-mL CH4 L−1 day−1), and yield (9.47 mol CH4 kg COD−1) show that AnSBBR is a promising technological alternative. After tests conducted in a laboratory-scale reactor, an industrial reactor was scaled and was also operated in a sequencing batch with immobilized biomass (AnSBBR) for the anaerobic treatment of vinasse with the goal of generating methane and environmental suitability to further disposal in soil. The calculations were performed based on data from a sugar and alcohol plant located in São Paulo, Brazil. This study proposes to the operation of the industrial scale reactor was the association of four AnSBBR (each one with a volume of 15849 m3) operating in parallel (with a feeding and discharge time of 4 h and a reaction time of 8 h), with the goal of adapting the treatment system from a discontinuous operation to a continuous operation. In this industrial scenario, the methane production was estimated at 1.65 × 106 mol CH4 day−1, and the energy was approximately 17 MW, increasing the possible energy recovery contained in sugarcane from 93 to 96 %.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700