Fast growth associated with aberrant vasculature and hypoxia in fibroblast growth factor 8b (FGF8b) over-expressing PC-3 prostate tumour xenografts
详细信息    查看全文
  • 作者:Johanna Tuomela (1) (2)
    Tove J Gr?nroos (3)
    Maija P Valta (1)
    Jouko Sandholm (4)
    Aleksi Schrey (5)
    Jani Sepp?nen (1) (2)
    P?ivi Marjam?ki (3)
    Sarita Forsback (6)
    Ilpo Kinnunen (5)
    Olof Solin (7)
    Heikki Minn (8)
    Pirkko L H?rk?nen (1) (9)
  • 刊名:BMC Cancer
  • 出版年:2010
  • 出版时间:December 2010
  • 年:2010
  • 卷:10
  • 期:1
  • 全文大小:7001KB
  • 参考文献:1. Stewart GD, Ross JA, McLaren DB, Parker CC, Habib FK, Riddick AC: The relevance of a hypoxic tumour microenvironment in prostate cancer. / BJU Int 2010,105(1):8-3. CrossRef
    2. Brown JM, Wilson WR: Exploiting tumour hypoxia in cancer treatment. / Nat Rev Cancer 2004,4(6):437-7. CrossRef
    3. Jokilehto T, Rantanen K, Luukkaa M, Heikkinen P, Grenman R, Minn H, Kronqvist P, Jaakkola PM: Overexpression and nuclear translocation of hypoxia-inducible factor prolyl hydroxylase PHD2 in head and neck squamous cell carcinoma is associated with tumor aggressiveness. / Clin Cancer Res 2006,12(4):1080-. CrossRef
    4. Pennacchietti S, Michieli P, Galluzzo M, Mazzone M, Giordano S, Comoglio PM: Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene. / Cancer Cell 2003,3(4):347-1. CrossRef
    5. Vaupel P, Harrison L: Tumor hypoxia: Causative factors, compensatory mechanisms, and cellular response. / Oncologist 2004,9(Suppl 5):4-. CrossRef
    6. Gatenby RA, Gillies RJ: Why do cancers have high aerobic glycolysis? / Nat Rev Cancer 2004,4(11):891-. CrossRef
    7. Mellanen P, Minn H, Grenman R, H?rk?nen P: Expression of glucose transporters in head-and-neck tumors. / Int J Cancer 1994,56(5):622-. CrossRef
    8. Stewart GD, Gray K, Pennington CJ, Edwards DR, Riddick AC, Ross JA, Habib FK: Analysis of hypoxia-associated gene expression in prostate cancer: Lysyl oxidase and glucose transporter-1 expression correlate with gleason score. / Oncol Rep 2008,20(6):1561-.
    9. Harris AL: Hypoxia--a key regulatory factor in tumour growth. / Nat Rev Cancer 2002,2(1):38-7. CrossRef
    10. Folkman J: Tumor angiogenesis: Therapeutic implications. / N Engl J Med 1971,285(21):1182-. CrossRef
    11. Hanahan D, Folkman J: Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. / Cell 1996,86(3):353-4. CrossRef
    12. Benjamin LE, Golijanin D, Itin A, Pode D, Keshet E: Selective ablation of immature blood vessels in established human tumors follows vascular endothelial growth factor withdrawal. / J Clin Invest 1999,103(2):159-5. CrossRef
    13. Ferrara N, Carver-Moore K, Chen H, Dowd M, Lu L, O'Shea KS, Powell-Braxton L, Hillan KJ, Moore MW: Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. / Nature 1996,380(6573):439-2. CrossRef
    14. Senger DR, Brown LF, Claffey KP, Dvorak HF: Vascular permeability factor, tumor angiogenesis and stroma generation. / Invasion Metastasis 1994,14(1-):385-4.
    15. Green MM, Hiley CT, Shanks JH, Bottomley IC, West CM, Cowan RA, Stratford IJ: Expression of vascular endothelial growth factor (VEGF) in locally invasive prostate cancer is prognostic for radiotherapy outcome. / Int J Radiat Oncol Biol Phys 2007,67(1):84-0. CrossRef
    16. Shariat SF, Anwuri VA, Lamb DJ, Shah NV, Wheeler TM, Slawin KM: Association of preoperative plasma levels of vascular endothelial growth factor and soluble vascular cell adhesion molecule-1 with lymph node status and biochemical progression after radical prostatectomy. / J Clin Oncol 2004,22(9):1655-3. CrossRef
    17. Gnanapragasam VJ, Robinson MC, Marsh C, Robson CN, Hamdy FC, Leung HY: FGF8 isoform b expression in human prostate cancer. / Br J Cancer 2003,88(9):1432-. CrossRef
    18. Powers CJ, McLeskey SW, Wellstein A: Fibroblast growth factors, their receptors and signaling. / Endocr Relat Cancer 2000,7(3):165-7. CrossRef
    19. Suzuki M, Satoh A, Ide H, Tamura K: Nerve-dependent and -independent events in blastema formation during xenopus froglet limb regeneration. / Dev Biol 2005,286(1):361-5. CrossRef
    20. Valta MP, Tuomela J, Vuorikoski H, Loponen N, V??n?nen RM, Pettersson K, V??n?nen HK, H?rk?nen PL: FGF-8b induces growth and rich vascularization in an orthotopic PC-3 model of prostate cancer. / J Cell Biochem 2009,107(4):769-4. CrossRef
    21. Valta MP, Hentunen T, Qu Q, Valve EM, Harjula A, Sepp?nen JA, V??n?nen HK, H?rk?nen PL: Regulation of osteoblast differentiation: A novel function for fibroblast growth factor 8. / Endocrinology 2006,147(5):2171-2. CrossRef
    22. Kwabi-Addo B, Ozen M, Ittmann M: The role of fibroblast growth factors and their receptors in prostate cancer. / Endocr Relat Cancer 2004,11(4):709-4. CrossRef
    23. Mattila MM, H?rkonen PL: Role of fibroblast growth factor 8 in growth and progression of hormonal cancer. / Cytokine Growth Factor Rev 2007,18(3-):257-6. CrossRef
    24. Doll JA, Reiher FK, Crawford SE, Pins MR, Campbell SC, Bouck NP: Thrombospondin-1, vascular endothelial growth factor and fibroblast growth factor-2 are key functional regulators of angiogenesis in the prostate. / Prostate 2001,49(4):293-05. CrossRef
    25. Huss WJ, Barrios RJ, Foster BA, Greenberg NM: Differential expression of specific FGF ligand and receptor isoforms during angiogenesis associated with prostate cancer progression. / Prostate 2003,54(1):8-6. CrossRef
    26. Valve EM, Nevalainen MT, Nurmi MJ, Laato MK, Martikainen PM, H?rkonen PL: Increased expression of FGF-8 isoforms and FGF receptors in human premalignant prostatic intraepithelial neoplasia lesions and prostate cancer. / Lab Invest 2001,81(6):815-6.
    27. Heer R, Douglas D, Mathers ME, Robson CN, Leung HY: Fibroblast growth factor 17 is over-expressed in human prostate cancer. / J Pathol 2004,204(5):578-6. CrossRef
    28. Tanaka A, Miyamoto K, Minamino N, Takeda M, Sato B, Matsuo H, Matsumoto K: Cloning and characterization of an androgen-induced growth factor essential for the androgen-dependent growth of mouse mammary carcinoma cells. / Proc Natl Acad Sci USA 1992,89(19):8928-2. CrossRef
    29. Ghosh AK, Shankar DB, Shackleford GM, Wu K, T'Ang A, Miller GJ, Zheng J, Roy-Burman P: Molecular cloning and characterization of human FGF8 alternative messenger RNA forms. / Cell Growth Differ 1996,7(10):1425-4.
    30. Song Z, Wu X, Powell WC, Cardiff RD, Cohen MB, Tin RT, Matusik RJ, Miller GJ, Roy-Burman P: Fibroblast growth factor 8 isoform B overexpression in prostate epithelium: A new mouse model for prostatic intraepithelial neoplasia. / Cancer Res 2002,62(17):5096-05.
    31. Tanaka A, Furuya A, Yamasaki M, Hanai N, Kuriki K, Kamiakito T, Kobayashi Y, Yoshida H, Koike M, Fukayama M: High frequency of fibroblast growth factor (FGF) 8 expression in clinical prostate cancers and breast tissues, immunohistochemically demonstrated by a newly established neutralizing monoclonal antibody against FGF 8. / Cancer Res 1998,58(10):2053-.
    32. Dorkin TJ, Robinson MC, Marsh C, Bjartell A, Neal DE, Leung HY: FGF8 over-expression in prostate cancer is associated with decreased patient survival and persists in androgen independent disease. / Oncogene 1999,18(17):2755-1. CrossRef
    33. Ornitz DM, Xu J, Colvin JS, McEwen DG, MacArthur CA, Coulier F, Gao G, Goldfarb M: Receptor specificity of the fibroblast growth factor family. / J Biol Chem 1996,271(25):15292-. CrossRef
    34. Ruohola JK, Viitanen TP, Valve EM, Sepp?nen JA, Loponen NT, Keskitalo JJ, Lakkakorpi PT, H?rk?nen PL: Enhanced invasion and tumor growth of fibroblast growth factor 8b-overexpressing MCF-7 human breast cancer cells. / Cancer Res 2001,61(10):4229-7.
    35. Mattila MM, Ruohola JK, Valve EM, Tasanen MJ, Sepp?nen JA, H?rk?nen PL: FGF-8b increases angiogenic capacity and tumor growth of androgen-regulated S115 breast cancer cells. / Oncogene 2001,20(22):2791-04. CrossRef
    36. Song Z, Powell WC, Kasahara N, van Bokhoven A, Miller GJ, Roy-Burman P: The effect of fibroblast growth factor 8, isoform b, on the biology of prostate carcinoma cells and their interaction with stromal cells. / Cancer Res 2000,60(23):6730-.
    37. Rudra-Ganguly N, Zheng J, Hoang AT, Roy-Burman P: Downregulation of human FGF8 activity by antisense constructs in murine fibroblastic and human prostatic carcinoma cell systems. / Oncogene 1998,16(11):1487-2. CrossRef
    38. Valta MP, Tuomela J, Bjartell A, Valve E, V??n?nen HK, H?rk?nen P: FGF-8 is involved in bone metastasis of prostate cancer. / Int J Cancer 2008,123(1):22-1. CrossRef
    39. Leung DW, Cachianes G, Kuang WJ, Goeddel DV, Ferrara N: Vascular endothelial growth factor is a secreted angiogenic mitogen. / Science 1989,246(4935):1306-. CrossRef
    40. Chomczynski P, Sacchi N: Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. / Anal Biochem 1987,162(1):156-. CrossRef
    41. Ruohola JK, Valve EM, Vainikka S, Alitalo K, H?rk?nen PL: Androgen and fibroblast growth factor (FGF) regulation of FGF receptors in S115 mouse mammary tumor cells. / Endocrinology 1995,136(5):2179-8. CrossRef
    42. Ruohola JK, Valve EM, K?rkk?inen MJ, Joukov V, Alitalo K, H?rk?nen PL: Vascular endothelial growth factors are differentially regulated by steroid hormones and antiestrogens in breast cancer cells. / Mol Cell Endocrinol 1999,149(1-):29-0. CrossRef
    43. W?rri AM, Huovinen RL, Laine AM, Martikainen PM, H?rk?nen PL: Apoptosis in toremifene-induced growth inhibition of human breast cancer cells in vivo and in vitro. / J Natl Cancer Inst 1993,85(17):1412-. CrossRef
    44. Tuomela JM, Valta MP, V??n?nen K, H?rk?nen PL: Alendronate decreases orthotopic PC-3 prostate tumor growth and metastasis to prostate-draining lymph nodes in nude mice. / BMC Cancer 2008, 8:81. CrossRef
    45. Bergman J, Solin O: Fluorine-18-labeled fluorine gas for synthesis of tracer molecules. / Nucl Med Biol 1997,24(7):677-3. CrossRef
    46. Evans SM, Judy KD, Dunphy I, Jenkins WT, Nelson PT, Collins R, Wileyto EP, Jenkins K, Hahn SM, Stewens CW, Judkins AR, Philips P, Geoerger B, Koch CJ: Comparative measurements of hypoxia in human brain tumors using needle electrodes and EF5 binding. / Cancer Res 2004,64(5):1886-2. CrossRef
    47. Gr?nroos T, Bentzen L, Marjam?ki P, Murata R, Horsman MR, Keiding S, Eskola O, Haaparanta M, Minn H, Solin O: Comparison of the biodistribution of two hypoxia markers [18F]FETNIM and [18F]FMISO in an experimental mammary carcinoma. / Eur J Nucl Med Mol Imaging 2004,31(4):513-0. CrossRef
    48. Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J, Gaskell SJ, Kriegsheim A, Hebestreit HF, Mukherji M, Schofield CJ, Maxwell PH, Pugh CW, Ratcliffe PJ: Targeting of HIF-alpha to the von hippel-lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. / Science 2001,292(5516):468-2. CrossRef
    49. Wang GL, Semenza GL: Purification and characterization of hypoxia-inducible factor 1. / J Biol Chem 1995,270(3):1230-. CrossRef
    50. Siddiqui K, Klotz LH: Emerging drugs for prostate cancer. / Expert Opin Emerg Drugs 2009,14(3):455-0. CrossRef
    51. Minn H, Gr?nroos TJ, Komar G, Eskola O, Lehti? K, Tuomela J, Sepp?nen M, Solin O: Imaging of tumor hypoxia to predict treatment sensitivity. / Curr Pharm Des 2008,14(28):2932-2. CrossRef
    52. Semenza GL, Artemov D, Bedi A, Bhujwalla Z, Chiles K, Feldser D, Laughner E, Ravi R, Simons J, Taghavi P, Zheng H: 'The metabolism of tumours': 70 years later. / Novartis Found Symp 2001, 240:251. 60; discussion 260- CrossRef
    53. Cao R, Brakenhielm E, Pawliuk R, Wariaro D, Post MJ, Wahlberg E, Leboulch P, Cao Y: Angiogenic synergism, vascular stability and improvement of hind-limb ischemia by a combination of PDGF-BB and FGF-2. / Nat Med 2003,9(5):604-3. CrossRef
    54. Sutherland RM, Ausserer WA, Murphy BJ, Laderoute KR: Tumor hypoxia and heterogeneity: Challenges and opportunities for the future. / Semin Radiat Oncol 1996,6(1):59-0. CrossRef
    55. Castell F, Cook GJ: Quantitative techniques in 18FDG PET scanning in oncology. / Br J Cancer 2008,98(10):1597-01. CrossRef
    56. Airley RE, Mobasheri A: Hypoxic regulation of glucose transport, anaerobic metabolism and angiogenesis in cancer: Novel pathways and targets for anticancer therapeutics. / Chemotherapy 2007,53(4):233-6. CrossRef
    57. Komar G, Sepp?nen M, Eskola O, Lindholm P, Gr?nroos TJ, Forsback S, Sipil? H, Evans SM, Solin O, Minn H: 18F-EF5: A new PET tracer for imaging hypoxia in head and neck cancer. / J Nucl Med 2008,49(12):1944-1. CrossRef
    58. Rajendran JG, Mankoff DA, O'Sullivan F, Peterson LM, Schwartz DL, Conrad EU, Spence AM, Muzi M, Farwell DG, Krohn KA: Hypoxia and glucose metabolism in malignant tumors: Evaluation by [18F]fluoromisonidazole and [18F]fluorodeoxyglucose positron emission tomography imaging. / Clin Cancer Res 2004,10(7):2245-2. CrossRef
    59. Menendez JA, Lupu R: Oncogenic properties of the endogenous fatty acid metabolism: Molecular pathology of fatty acid synthase in cancer cells. / Curr Opin Clin Nutr Metab Care 2006,9(4):346-7. CrossRef
    60. Prentki M, Madiraju SR: Glycerolipid metabolism and signaling in health and disease. / Endocr Rev 2008,29(6):647-6. CrossRef
    61. West AF, O'Donnell M, Charlton RG, Neal DE, Leung HY: Correlation of vascular endothelial growth factor expression with fibroblast growth factor-8 expression and clinico-pathologic parameters in human prostate cancer. / Br J Cancer 2001,85(4):576-3. CrossRef
    62. The pre-publication history for this paper can be accessed here:http://www.biomedcentral.com/1471-2407/10/596/prepub
  • 作者单位:Johanna Tuomela (1) (2)
    Tove J Gr?nroos (3)
    Maija P Valta (1)
    Jouko Sandholm (4)
    Aleksi Schrey (5)
    Jani Sepp?nen (1) (2)
    P?ivi Marjam?ki (3)
    Sarita Forsback (6)
    Ilpo Kinnunen (5)
    Olof Solin (7)
    Heikki Minn (8)
    Pirkko L H?rk?nen (1) (9)

    1. Institute of Biomedicine, Department of Cell Biology and Anatomy, University of Turku, Turku, Finland
    2. Pharmatest Services Ltd., Turku, Finland
    3. Turku PET Centre, MediCity Preclinical Research Laboratory, University of Turku and ?bo Akademi University, Turku, Finland
    4. Cell Imaging Core, Turku Centre for Biotechnology, University of Turku and ?bo Akademi University, Turku, Finland
    5. Department of Otorhinolaryngology - Head and Neck Surgery, Turku University Hospital, University of Turku, Turku, Finland
    6. Turku PET Centre, Radiopharmaceutical Chemistry Laboratory, University of Turku and ?bo Akademi University, Turku, Finland
    7. Turku PET Centre, Accelerator Laboratory, MediCity Preclinical Research Laboratory, University of Turku and ?bo Akademi University, Turku, Finland
    8. Department of Oncology and Radiotherapy, Turku University Hospital, Turku, Finland
    9. Department of Laboratory Medicine, MAS University Hospital, Lund University, Malm?, Sweden
  • ISSN:1471-2407
文摘
Background Prostate tumours are commonly poorly oxygenated which is associated with tumour progression and development of resistance to chemotherapeutic drugs and radiotherapy. Fibroblast growth factor 8b (FGF8b) is a mitogenic and angiogenic factor, which is expressed at an increased level in human prostate tumours and is associated with a poor prognosis. We studied the effect of FGF8b on tumour oxygenation and growth parameters in xenografts in comparison with vascular endothelial growth factor (VEGF)-expressing xenografts, representing another fast growing and angiogenic tumour model. Methods Subcutaneous tumours of PC-3 cells transfected with FGF8b, VEGF or empty (mock) vectors were produced and studied for vascularity, cell proliferation, glucose metabolism and oxygenation. Tumours were evaluated by immunohistochemistry (IHC), flow cytometry, use of radiolabelled markers of energy metabolism ([18F]FDG) and hypoxia ([18F]EF5), and intratumoral polarographic measurements of pO2. Results Both FGF8b and VEGF tumours grew rapidly in nude mice and showed highly vascularised morphology. Perfusion studies, pO2 measurements, [18F]EF5 and [18F]FDG uptake as well as IHC staining for glucose transport protein (GLUT1) and hypoxia inducible factor (HIF) 1 showed that VEGF xenografts were well-perfused and oxygenised, as expected, whereas FGF8b tumours were as hypoxic as mock tumours. These results suggest that FGF8b-induced tumour capillaries are defective. Nevertheless, the growth rate of hypoxic FGF8b tumours was highly increased, as that of well-oxygenised VEGF tumours, when compared with hypoxic mock tumour controls. Conclusion FGF8b is able to induce fast growth in strongly hypoxic tumour microenvironment whereas VEGF-stimulated growth advantage is associated with improved perfusion and oxygenation of prostate tumour xenografts.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700