Comparison between inorganic geomimetic chrysotile and multiwalled carbon nanotubes in the preparation of one-dimensional conducting polymer nanocomposites
详细信息    查看全文
  • 作者:Filippo Pierini (1) (2)
    Massimiliano Lanzi (3)
    Isidoro Giorgio Lesci (2)
    Norberto Roveri (2)

    1. Department of Mechanics and Physics of Fluids
    ; Institute of Fundamental Technological Research ; Polish Academy of Sciences ; Warsaw ; 02-106 ; Poland
    2. Department of Chemistry (G.Ciamician)
    ; Alma Mater Studiorum ; University of Bologna ; Bologna ; 40126 ; Italy
    3. Department of Industrial Chemistry (Toso Montanari)
    ; Alma Mater Studiorum ; University of Bologna ; Bologna ; 40136 ; Italy
  • 关键词:Nanocomposites ; Conductive polymer ; Electrospinning ; Chrysotile ; Carbon nanotubes
  • 刊名:Fibers and Polymers
  • 出版年:2015
  • 出版时间:February 2015
  • 年:2015
  • 卷:16
  • 期:2
  • 页码:426-433
  • 全文大小:1,196 KB
  • 参考文献:1. Lu, X., Zhang, W., Wang, C., Wen, T. C., Wei, Y. (2011) Prog. Polym. Sci. 36: pp. 671 CrossRef
    2. Tan, S. H., Inai, R., Kotaki, M., Ramakrishna, S. (2005) Polymer 46: pp. 6128 CrossRef
    3. Rajesh, A. T., Kumar, D. (2009) Sens. Actuators B-Chem. 136: pp. 275 CrossRef
    4. Gupta, N., Sharma, S., Mir, I. A., Kumar, D. (2006) J. Sci. Ind. Res. 65: pp. 549
    5. Sadek, A. Z., Wlodarski, W., Shin, K., Kaner, R. B., Kalantar-Zadeh, K. (2006) Nanotechnology 17: pp. 4488 CrossRef
    6. Virji, S., Fowler, J. D., Baker, C. O., Huang, J., Kaner, R. B., Weiller, B. H. (2005) Small 1: pp. 624 CrossRef
    7. Dhand, C., Solanki, P. R., Sood, K. N., Datta, M., Malhotra, B. D. (2009) Electrochem. Commun. 11: pp. 1482 CrossRef
    8. Pinto, N. J., Johnson, A. T., Macdiarmid, A. G., Mueller, C. H., Theofylaktos, N., Robinson, D. C., Miranda, F. A. (2003) Appl. Phys. Lett. 83: pp. 4244 CrossRef
    9. Pinto, N. J., Gonzalez, R., Johnson, A. T., MacDiarmid, A. G. (2006) Appl. Phys. Lett. 89: pp. 033505 CrossRef
    10. Lanzi, M., Paganin, L., Pierini, F., Errani, F., Nicola, F. P. (2014) React. Funct. Polym. 83: pp. 33 CrossRef
    11. Xiong, S., Wang, Q., Xia, H. (2004) Synth. Met. 146: pp. 37 CrossRef
    12. Park, D. H., Kim, M., Kim, M. S., Kim, D. C., Song, H., Kim, J., Joo, J. (2008) Electrochem. Solid State Lett. 11: pp. K69 CrossRef
    13. Merlo, J. A., Frisbie, C. D. (2004) J. Phys. Chem. B 108: pp. 19169 CrossRef
    14. Park, S. K., Dhakal, K. P., Kim, J., Kim, J. H., Rho, H. (2011) Synth. Met. 161: pp. 1088 CrossRef
    15. Long, Y., Chen, Z., Wang, N., Zhang, Z., Wan, M. (2003) Physica B 325: pp. 208 CrossRef
    16. Hatchett, D. W., Josowicz, M. (2008) Chem. Rev. 108: pp. 746 CrossRef
    17. Mottaghitalab, V., Binbin, X., Spinks, G. M., Wallace, G. G. (2006) Synth. Met. 156: pp. 796 CrossRef
    18. Han, Z., Zhang, J., Yang, X., Zhu, H., Cao, W. (2010) Org. Electron. 11: pp. 1449 CrossRef
    19. Zuo, S., Liu, W., Yao, C., Li, X., Kong, Y., Liu, X., Mao, H., Li, Y. (2013) Chem. Eng. J. 228: pp. 1092 CrossRef
    20. Liu, M., Guo, B., Zou, Q., Du, M., Jia, D. (2008) Nanotechnology 20: pp. 205709 CrossRef
    21. Sun, X., Long, Y., Wang, P., Sun, J., Ma, J. (2012) React. Funct. Polym. 72: pp. 323 CrossRef
    22. Surya Murali, R., Padaki, M., Matsuura, T., Abdullah, M. S., Ismail, A. F. (2014) Sep. Purif. Technol. 132: pp. 187 CrossRef
    23. Attia, N. F., Menemparabath, M. M., Arepalli, S., Geckeler, K. E. (2013) Int. J. Hydrog. Energy 38: pp. 9251 CrossRef
    24. Yang, C., Liu, P., Zhao, Y. (2010) Electrochim. Acta 55: pp. 6857 CrossRef
    25. Falini, G., Foresti, E., Lesci, I. G., Roveri, N. (2002) Chem. Commun. 14: pp. 1512 CrossRef
    26. Falini, G., Foresti, E., Gazzano, M., Gualtieri, A. F., Leoni, M., Lesci, I. G., Roveri, N. (2004) Chem. Eur. J. 10: pp. 3043 CrossRef
    27. Leoni, M., Gualtieri, A. F., Roveri, N. (2004) J. Appl. Crystallogr. 37: pp. 166 CrossRef
    28. Foresti, E., Hochella, M. F., Kornishi, H., Lesci, I. G., Madden, A. S., Roveri, N., Xu, H. (2005) Adv. Funct. Mater. 15: pp. 1009 CrossRef
    29. Gazzano, E., Foresti, E., Lesci, I. G., Tomatis, M., Riganti, C., Fubini, B., Roveri, N., Ghigo, D. (2005) Toxicol. Appl. Pharmacol. 3: pp. 356 CrossRef
    30. Gazzano, E., Turci, F., Foresti, E., Putzu, M. G., Aldieri, E., Silvagno, F., Lesci, I. G., Tomatis, M., Riganti, C., Romano, C., Fubini, B., Roveri, N., Ghigo, D. (2007) Chem. Res. Toxicol. 20: pp. 380 CrossRef
    31. Sabatino, P., Casella, L., Granata, A., Iafisco, M., Lesci, I. G., Monzani, E., Roveri, N. (2007) J. Colloid Interface Sci. 314: pp. 389 CrossRef
    32. Foresti, E., Fornero, E., Lesci, I. G., Rinaudo, C., Zuccheri, T., Roveri, N. (2009) J. Hazard. Mater. 167: pp. 1070 CrossRef
    33. Borghi, E., Occhiuzzi, M., Foresti, E., Lesci, I. G., Roveri, N. (2010) Phys. Chem. Chem. Phys. 12: pp. 227 CrossRef
    34. Lesci, I. G., Balducci, G., Pierini, F., Soavi, F., Roveri, N. (2014) Microporous Mesoporous Mat. 197: pp. 8 CrossRef
    35. Roveri, N., Falini, G., Foresti, E., Fracasso, G., Lesci, I. G., Sabatino, P. (2006) J. Mater. Res. 21: pp. 2711 CrossRef
    36. Piperno, S., Kaplan-Ashiri, I., Cohen, S. R., Popovitz-Biro, R., Wagner, H. D., Tenne, R., Foresti, E., Lesci, I. G., Roveri, N. (2007) Adv. Funct. Mater. 17: pp. 3332 CrossRef
    37. Luca, G., Romeo, A., Villari, V., Micali, N., Fortran, I., Foresti, E., Lesci, I. G., Roveri, N., Zuccheri, T., Mons霉 Scolaro, L. (2009) J. Am. Chem. Soc. 131: pp. 6920 CrossRef
    38. Pierini, F., Foresti, E., Fracasso, G., Lesci, I. G., Roveri, N. (2010) Isr. J. Chem. 50: pp. 484 CrossRef
    39. Allen, R., Bao, Z., Fuller, G. G. (2013) Nanotechnology 24: pp. 015709 CrossRef
    40. Gao, Y., Li, Z., Lin, Z., Zhu, L., Tannenbaum, A., Bouix, S., Wong, C. P. (2012) Nanotechnology 23: pp. 435706 CrossRef
    41. Song, K., Zhang, Y., Meng, J., Green, E. C., Tajaddod, N., Li, H., Minus, M. L. (2013) Materials 6: pp. 2543 CrossRef
    42. Shin, M. K., Lee, B., Kim, S. H., Lee, J. A., Spinks, G. M., Gambhir, S., Wallace, G. G., Kozlov, M. E., Baughman, R. H., Kim, S. J. (2012) Nat. Commun. 3: pp. 1661
    43. Li, L., Yang, Z., Gao, H., Zhang, H., Ren, J., Sun, X., Chen, T., Kia, H. G., Peng, H. (2011) Adv. Mater. 23: pp. 3730 CrossRef
    44. Geng, J., Zeng, T. (2006) J. Am. Chem. Soc. 128: pp. 16827 CrossRef
    45. Norris, I. D., Shaker, M. M., Ko, F. K., MacDiarmid, A. G. (2000) Synth. Met. 114: pp. 109 CrossRef
    46. Sundarrajan, S., Murugam, R., Nair, A. S., Ramakrishna, S. (2010) Mater. Lett. 64: pp. 2369 CrossRef
    47. Bianco, A., Bertarelli, C., Frisk, S., Rabolt, J. F., Gallazzi, M. C., Zerbi, G. (2007) Synth. Met. 157: pp. 276 CrossRef
    48. Zong, X., Kim, K., Fang, D., Ran, S., Hsiao, B. S., Chu, B. (2002) Polymer 43: pp. 4403 CrossRef
    49. Dror, Y., Salalha, W., Khalfin, R. L., Cohen, Y., Yarin, A. L., Zussman, E. (2003) Langmuir 19: pp. 7012 CrossRef
    50. Kanagaraj, S., Varanda, F. R., Zhil鈥檛sova, T. V., Oliveira, M. S. A., Simoes, J. A. O. (2007) Compos. Sci. Technol. 67: pp. 3071 CrossRef
    51. Naebe, M., Lin, T., Staiger, M. P., Dai, L., Wang, X. (2008) Nanotechnology 19: pp. 305702 CrossRef
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Polymer Sciences
  • 出版者:The Korean Fiber Society
  • ISSN:1875-0052
文摘
The aim of this study was to examine the role of the nanofillers spatial arrangement in the electrical properties of hybrid organic-inorganic fibers. In this paper, we have presented experimental results for preparation of fibers with a nanometric diameter based on a polyaniline/poly(ethylene oxide) doped blend and geomimetic chrysotile nanotubes. The nanostructured material was prepared using electrospinning techniques. Electrospun fibers made by pristine polymers and by the same blend loaded with carbon nanotubes were used as reference materials to compare the structural, and electrical properties of the novel organic-inorganic material. Generally, electrical properties were improved by the addition of materials that have high conductivity. Electrospun fibers filled with a traditional insulator like chrysotile have shown higher electrical conductivity than the pristine materials. In order to fully understand how structural variations impact upon the electrical conductivity the materials were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy (RS), differential scanning calorimetry (DSC) and four-point probe method. The results suggest that the occurred electrical conductivity gain could be attributed to parallel orientation of the chrysotile nanotubes and higher crystallinity induced by the one-dimensional nanostructured filler materials. The obtained results bring us one step closer to using intrinsically conducting polymers (ICPs) in the creation of functionalized polymeric nanocomposites for nanotechnology.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700