Distributed consensus-based formation control for nonholonomic wheeled mobile robots using adaptive neural network
详细信息    查看全文
文摘
This paper investigates the distributed formation control problem for multiple nonholonomic wheeled mobile robots. A variable transformation is first proposed to convert the formation control problem into a state consensus problem. Then, when the dynamics of the mobile robots are considered, the distributed kinematic controllers and neural network torque controllers are derived for each robot such that a group of nonholonomic mobile robots asymptotically converge to a desired geometric pattern along the specified reference trajectory. The specified reference trajectory is assumed to be the trajectory of a virtual leader whose information is available to only a subset of the followers. Also the followers are assumed to have only local interaction. Moreover, the neural network torque controllers proposed in this work can tackle the dynamics of robots with unmodeled bounded disturbances and unstructured unmodeled dynamics. Some sufficient conditions are derived for accomplish the asymptotically stability of the systems based on algebraic graph theory, matrix theory, and Lyapunov control approach. Finally, simulation examples illustrate the effectiveness of the proposed controllers.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700