Post-treatment of anaerobic reactor effluent using coagulation/oxidation followed by double filtration
详细信息    查看全文
  • 作者:Grasiele Soares Cavallini…
  • 关键词:Wastewater reuse ; Double filtration ; Coagulation/oxidation ; Peracetic acid and iron ions
  • 刊名:Environmental Science and Pollution Research
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:23
  • 期:7
  • 页码:6244-6252
  • 全文大小:787 KB
  • 参考文献:Aguiar A, Ferraz A, Contreras D, Rodríguez J (2007) Mechanism and applications of Fenton reaction assisted by phenolic iron reducing compounds. Quim Nov. 30(n.3):623–628. doi:10.​1590/​S0100-4042200700030002​3 , In Portuguese
    American Public Health Association (APHA)/American Water Works Association (AWWA)/Water Environment Federation (WEF) (1998) Standard methods of the examination of water and wastewater, 20th edn. APHA CD-ROM, USA
    Aslari A, Roques C, Michel G (1992) Bactericidal properties of peracetic acid and hydrogen peroxide, alone and in combination, and chlorine and formaldehyde against bacterial waer strains. Can J Microbiol 38:635–643. doi:10.​1139/​m92-104 CrossRef
    Bar-Zeev E, Belkin N, Liberman B, Berman T, Berman-Frank I (2012) Rapid sand filtration pretreatment for SWRO: microbial maturation dynamics and filtration efficiency of organic matter. Desalination 286:120–130. doi:10.​1016/​j.​desal.​2011.​11.​010 CrossRef
    Björnsson L, Murto M, Jantsch TG, Mattiasson B (2001) Evaluation of new methods for the monitoring of alkalinity, dissolved hydrogen and the microbial community in anaerobic digestion. Water Res 35(12):2833–2840. doi:10.​1016/​S0043-1354(00)00585-6 CrossRef
    Cavallini, G. S.; Campos, S. X.; Souza, J. B.; Vidal, C. M. S. (2012) Influência das características físico-químicas do esgoto sanitário na desinfecção com ácido peracético. Eclética química;37.
    Cavallini GS, Campos SX, Souza JB, Vidal CMS (2013) Evaluation of the physical-chemical characteristics of wastewater after disinfection with peracetic acid. Water Air Soil Pollut 224:1752. doi:10.​1007/​s11270-013-1752-5 CrossRef
    Cheremisinoff NP (1998) Liquid filtration. Application of filtration to wastewater treatment, 2nd edn. Butterworth-Heinemann, USA
    Desai R, Sahu O (2014) Comparative study of polymer and regular coagulant for municipal waste water treatment. J Appl Chem 2(1):82–91
    Greenlee LF, Lawler DF, Freeman BD, Marrot BD, Marrot B, Moulin P (2009) Reverse osmosis desalination: water sources, technology, and today's challenges, a review. Water Res 43:2317–2348. doi:10.​1016/​j.​watres.​2009.​03.​010 CrossRef
    Halliwell, B. (2003) EmWood Deterioration and Preservation – Advances in our Changing World; Goodell, B.; Nicholas, D. D.; Schultz, T. P., (eds).; ACSSymp. Ser 845, American Chemical Society: Washington.
    Hamoda MF, Ghusain IA, Mutairi NZ (2004) Sand filtration of wastewater for tertiary treatment and water reuse. Desalination 164:203–211. doi:10.​1016/​S0011-9164(04)00189-4 CrossRef
    Khan AA, Gaur RZ, Tyagi AK, Lew B, Mehrotra I, Kasmi AA (2011) Sustainable options of post treatment of UASB effluent treating sewage: a review. Resour Conserv Recycl 55:1232–1251. doi:10.​1016/​j.​resconrec.​2011.​05.​017 CrossRef
    Koivunen J, Siitonenb A, Heinonen-TanskiH H (2003) Elimination of enteric bacteria in biological-chemical wastewater treatment and tertiary filtration units. Water Res 37:690–698. doi:10.​1016/​S0043-1354(02)00305-6 CrossRef
    Norton-Brandão DN, Scherrenberg SM, Lier JB (2013) Reclamation of used urban waters for irrigation purposes: a review of treatment technologies. J Environ Manag 122:85–98. doi:10.​1016/​j.​jenvman.​2013.​03.​012 CrossRef
    PROSAB (1999) Supply water treatment by filtration in multiple steps. FINEP, Portuguese
    Qin G, McGuire MJ, Blute ND, Seidel C, Fong L (2005) Hexavalent chromium removal by reduction with ferrous sulfate, coagulation, and filtration: a pilot-scale study. Environ Sci Technol 39:6321–6327. doi:10.​1021/​es050486p CrossRef
    Tyagi VK, KhanAA KAA, Mehrotra I, Chopra AK (2009) Slow sand filtration of UASB reactor effluent: a promising post treatment technique. Desalination 249(2):571–576. doi:10.​1016/​j.​desal.​2008.​12.​049 CrossRef
    United States Environmental Protection Agency - EPA (2012) Manual: guidelines for water reuse EPA/600/R-12/618.
    Üstü GE, Solmaz SKA, Çiner F, Baskaya HS (2011) Tertiary treatment of a secondary effluent by the coupling of coagulation-flocculation-disinfection for irrigation reuse. Desalination 277:207–212. doi:10.​1016/​j.​desal.​2011.​04.​032 CrossRef
    Verlicchi P, Galletti A, Masotti L (2009) A promising practice to reclaim treated wastewater for reuse: chemical disinfection followed by natural systems. Desalination 247:490–508. doi:10.​1016/​j.​desal.​2009.​03.​004 CrossRef
    Williams GJ, Sheikh B, Holden RB, Kouretas TJ, Nelson KL (2007) The impact of increased loading rate on granular media, rapid depth filtration of wastewater. Water Res 41(19):4535–4545. doi:10.​1016/​j.​watres.​2007.​06.​018 CrossRef
    Zar JH (1999) Biostatistical analysis. Prentice-Hall, Upper Saddle River, 662
    Zheng X, Ernst M, Jekel M (2010) Pilot-scale investigation on the removal of organic foulants in secondary effluent by slow sand filtration prior to ultrafiltration. Water Res 44:3203–3213. doi:10.​1016/​j.​watres.​2010.​02.​038 CrossRef
  • 作者单位:Grasiele Soares Cavallini (1)
    Carlos Magno de Sousa Vidal (2)
    Jeanette Beber de Souza (2)
    Sandro Xavier de Campos (3)

    1. Department of Environmental Chemistry, Tocantins Federal University, 77402-970, Gurupi, Tocantins, Brazil
    2. Master’s Program on Sanitary and Environmental Engineering, Department of Environmental Engineering, Centro-Oeste State University, Irati, Parana, Brazil
    3. DoctoralProgram in Chemistry, Ponta Grossa StateUniversity, Ponta Grossa, Paraná, Brazil
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Environment
    Environment
    Atmospheric Protection, Air Quality Control and Air Pollution
    Waste Water Technology, Water Pollution Control, Water Management and Aquatic Pollution
    Industrial Pollution Prevention
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1614-7499
文摘
This study evaluates the efficacy of a sanitary sewage treatment system, proposing post-treatment of the effluent generated by the upflow anaerobic sludge blanket UASB reactor, through a Fenton coagulation/oxidation ((ferric chloride (FC) or ferrous sulfate (FS) and peracetic acid (PAA)), followed by a double filtration system, composed of a gravel ascending drainage filter and a sand descending filter. Following the assessment of treatability, the system efficiency was evaluated using physicochemical and microbiological parameters. In all treatments performed in the pilot unit, total suspended solids (TSS) were completely removed, leading to a decrease in turbidity greater than 90 % and close to 100 % removal of total phosphorous. In the FC and PAA combination, the effluent was oxygenated prior to filtration, enabling a more significant removal of biochemical oxygen demand (BOD), which characterizes aerobic degradation even in a quick sand filter. The treatments carried out in the presence of the PAA oxidizing agent showed a more significant bleaching of the effluent. Concerning the microbiological parameters, the simultaneous use of PAA and FC contributed to the partial inactivation of the assessed microorganisms. A 65 % recovery of the effluent was obtained with the proposed treatment system, considering the volume employed in filter backwashing.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700