Enterohepatic bacterial infections dysregulate the FGF15-FGFR4 endocrine axis
详细信息    查看全文
  • 作者:Guillaume Romain (8)
    Sarah Tremblay (8)
    Ellen T Arena (12) (9)
    L Caetano M Antunes (13) (9)
    Scott Covey (10)
    Michael T Chow (11) (14)
    B Brett Finlay (10) (9)
    Alfredo Menendez (8)
  • 关键词:Endocrine ; Metabolism ; Enterohepatic ; Infection ; FGF15 ; FGF19 ; FGFR4 ; βKlotho ; Salmonella ; Listeria
  • 刊名:BMC Microbiology
  • 出版年:2013
  • 出版时间:December 2013
  • 年:2013
  • 卷:13
  • 期:1
  • 全文大小:855 KB
  • 参考文献:1. Powanda MC, Beisel WR: Metabolic effects of infection on protein and energy status. / J Nutr 2003,133(1):322S-327S.
    2. McGuinness OP: Defective glucose homeostasis during infection. / Annu Rev Nutr 2005, 25:9-5. CrossRef
    3. Khosla SN: / Typhoyd fever. Its cause, transmission and prevention. New Delhi: Atlantic Publishers; 2008.
    4. Antunes LC, Arena ET, Menendez A, Han J, Ferreira RB, Buckner MM, Lolic P, Madilao LL, Bohlmann J, Borchers CH, / et al.: Impact of salmonella infection on host hormone metabolism revealed by metabolomics. / Infect Immun 2011,79(4):1759-769. CrossRef
    5. Parry CM: Epidemiological and clinical aspects of human typhoid fever. In / Salmonella infections: clinical, immunological and molecular aspects. Edited by: Mastroeni P, Maskell D. Cambridge, New York: Cambridge University Press; 2006.
    6. Inagaki T, Choi M, Moschetta A, Peng L, Cummins CL, McDonald JG, Luo G, Jones SA, Goodwin B, Richardson JA, / et al.: Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis. / Cell Metab 2005,2(4):217-25. CrossRef
    7. Jones SA: Physiology of FGF15/19. In / Endocrine FGFs and Klothos. Edited by: Kuro-o M. New York: Landes Bioscience and Springer Science; 2012:171-82. CrossRef
    8. Potthoff MJ, Kliewer SA, Mangelsdorf DJ: Endocrine fibroblast growth factors 15/19 and 21: from feast to famine. / Genes Dev 2012,26(4):312-24. CrossRef
    9. Chiang JY: Bile acids: regulation of synthesis. / J Lipid Res 2009,50(10):1955-966. CrossRef
    10. Sinha J, Chen F, Miloh T, Burns RC, Yu Z, Shneider BL: Beta-Klotho and FGF-15/19 inhibit the apical sodium-dependent bile acid transporter in enterocytes and cholangiocytes. / Am J Physiol Gastrointest Liver Physiol 2008,295(5):G996-G1003. CrossRef
    11. Choi M, Moschetta A, Bookout AL, Peng L, Umetani M, Holmstrom SR, Suino-Powell K, Xu HE, Richardson JA, Gerard RD, / et al.: Identification of a hormonal basis for gallbladder filling. / Nat Med 2006,12(11):1253-255. CrossRef
    12. Yu C, Wang F, Kan M, Jin C, Jones RB, Weinstein M, Deng CX, McKeehan WL: Elevated cholesterol metabolism and bile acid synthesis in mice lacking membrane tyrosine kinase receptor FGFR4. / J Biol Chem 2000,275(20):15482-5489. CrossRef
    13. Ito S, Fujimori T, Furuya A, Satoh J, Nabeshima Y: Impaired negative feedback suppression of bile acid synthesis in mice lacking betaKlotho. / J Clin Invest 2005,115(8):2202-208. CrossRef
    14. Kuro-o M: Klotho and betaKlotho. / Adv Exp Med Biol 2012, 728:25-0. CrossRef
    15. Lenicek M, Duricova D, Komarek V, Gabrysova B, Lukas M, Smerhovsky Z, Vitek L: Bile acid malabsorption in inflammatory bowel disease: assessment by serum markers. / Inflamm Bowel Dis 2011,17(6):1322-327. CrossRef
    16. Walters JR, Tasleem AM, Omer OS, Brydon WG, Dew T, le Roux CW: A new mechanism for bile acid diarrhea: defective feedback inhibition of bile acid biosynthesis. / Clin Gastroenterol Hepatol 2009,7(11):1189-194. CrossRef
    17. Schaap FG, van der Gaag NA, Gouma DJ, Jansen PL: High expression of the bile salt-homeostatic hormone fibroblast growth factor 19 in the liver of patients with extrahepatic cholestasis. / Hepatology 2009,49(4):1228-235. CrossRef
    18. Schreuder TC, Marsman HA, Lenicek M, van Werven JR, Nederveen AJ, Jansen PL, Schaap FG: The hepatic response to FGF19 is impaired in patients with nonalcoholic fatty liver disease and insulin resistance. / Am J Physiol Gastrointest Liver Physiol 2010,298(3):G440-G445. CrossRef
    19. Galan JE, Curtiss R 3rd: Distribution of the invA, -B, -C, and -D genes of Salmonella typhimurium among other Salmonella serovars: invA mutants of Salmonella typhi are deficient for entry into mammalian cells. / Infect Immun 1991,59(9):2901-908.
    20. Bishop DK, Hinrichs DJ: Adoptive transfer of immunity to Listeria monocytogenes. The influence of in vitro stimulation on lymphocyte subset requirements. / J Immunol 1987,139(6):2005-009.
    21. Pfaffl MW: A new mathematical model for relative quantification in real-time RT-PCR. / Nucleic Acids Res 2001,29(9):e45. CrossRef
    22. Menendez A, Arena ET, Guttman JA, Thorson L, Vallance BA, Vogl W, Finlay BB: Salmonella infection of gallbladder epithelial cells drives local inflammation and injury in a model of acute typhoid fever. / J Infect Dis 2009,200(11):1703-713. CrossRef
    23. van Asten AJ, Koninkx JF, van Dijk JE: Salmonella entry: M cells versus absorptive enterocytes. / Vet Microbiol 2005,108(1-):149-52. CrossRef
    24. Okamoto M, Nakane A, Minagawa T: Host resistance to an intragastric infection with Listeria monocytogenes in mice depends on cellular immunity and intestinal bacterial flora. / Infection and immunity 1994,62(8):3080-085.
    25. Lecuit M: Understanding how Listeria monocytogenes targets and crosses host barriers. / Clin Microbiol Infect 2005,11(6):430-36. CrossRef
    26. De Gottardi A, Touri F, Maurer CA, Perez A, Maurhofer O, Ventre G, Bentzen CL, Niesor EJ, Dufour JF: The bile acid nuclear receptor FXR and the bile acid binding protein IBABP are differently expressed in colon cancer. / Dig Dis Sci 2004,49(6):982-89. CrossRef
    27. Frankenberg T, Rao A, Chen F, Haywood J, Shneider BL, Dawson PA: Regulation of the mouse organic solute transporter alpha-beta, Ostalpha-Ostbeta, by bile acids. / Am J Physiol Gastrointest Liver Physiol 2006,290(5):G912-G922. CrossRef
    28. Kosters A, Karpen SJ: The role of inflammation in cholestasis: clinical and basic aspects. / Semin Liver Dis 2010,30(2):186-94. CrossRef
    29. Triantis V, Saeland E, Bijl N, Oude-Elferink RP, Jansen PL: Glycosylation of fibroblast growth factor receptor 4 is a key regulator of fibroblast growth factor 19-mediated down-regulation of cytochrome P450 7A1. / Hepatology 2010,52(2):656-66. CrossRef
    30. Wu X, Li Y: Therapeutic utilities of fibroblast growth factor 19. / Expert Opin Ther Targets 2011,15(11):1307-316. CrossRef
    31. Tomlinson E, Fu L, John L, Hultgren B, Huang X, Renz M, Stephan JP, Tsai SP, Powell-Braxton L, French D, / et al.: Transgenic mice expressing human fibroblast growth factor-19 display increased metabolic rate and decreased adiposity. / Endocrinology 2002,143(5):1741-747. CrossRef
    32. Fu L, John LM, Adams SH, Yu XX, Tomlinson E, Renz M, Williams PM, Soriano R, Corpuz R, Moffat B, / et al.: Fibroblast growth factor 19 increases metabolic rate and reverses dietary and leptin-deficient diabetes. / Endocrinology 2004,145(6):2594-603. CrossRef
    33. Bhatnagar S, Damron HA, Hillgartner FB: Fibroblast growth factor-19, a novel factor that inhibits hepatic fatty acid synthesis. / J Biol Chem 2009,284(15):10023-0033. CrossRef
    34. Wu X, Ge H, Lemon B, Vonderfecht S, Weiszmann J, Hecht R, Gupte J, Hager T, Wang Z, Lindberg R, / et al.: FGF19-induced hepatocyte proliferation is mediated through FGFR4 activation. / J Biol Chem 2010,285(8):5165-170. CrossRef
    35. Uriarte I, Fernandez-Barrena MG, Monte MJ, Latasa MU, Chang HC, Carotti S, Vespasiani-Gentilucci U, Morini S, Vicente E, Concepcion AR, / et al.: Identification of fibroblast growth factor 15 as a novel mediator of liver regeneration and its application in the prevention of post-resection liver failure in mice. / Gut 2013,62(6):899-10. CrossRef
    36. Diaz-Delfin J, Hondares E, Iglesias R, Giralt M, Caelles C, Villarroya F: TNF-alpha represses beta-Klotho expression and impairs FGF21 action in adipose cells: involvement of JNK1 in the FGF21 pathway. / Endocrinology 2012,153(9):4238-245. CrossRef
    37. Diez E, Zhu L, Teatero SA, Paquet M, Roy MF, Loredo-Osti JC, Malo D, Gruenheid S: Identification and characterization of Cri1, a locus controlling mortality during Citrobacter rodentium infection in mice. / Genes Immun 2011, 12:280-90. CrossRef
  • 作者单位:Guillaume Romain (8)
    Sarah Tremblay (8)
    Ellen T Arena (12) (9)
    L Caetano M Antunes (13) (9)
    Scott Covey (10)
    Michael T Chow (11) (14)
    B Brett Finlay (10) (9)
    Alfredo Menendez (8)

    8. Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, University of Sherbrooke, Cancer Research Pavilion, Rm Z8-1072, 3201, rue Jean-Mignault, Sherbrooke, Québec, J1E 4K8, Canada
    12. Unité de Pathogénie Microbienne Moléculaire Institut Pasteur, 28 rue du Dr Roux, F -75724, Paris Cédex 15, France
    9. Michael Smith Laboratories, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
    13. Escola Nacional de Saúde Pública Sergio Arouca, Funda??o Oswaldo Cruz, Rua Leopoldo Bulh?es, 1480, Rio de Janeiro, RJ, 21041-210, Brazil
    10. Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
    11. Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
    14. Qu Biologics Inc, 887 Great Northern Way, Suite 138, Vancouver, BC, V5T 4T5, Canada
  • ISSN:1471-2180
文摘
Background Enterohepatic bacterial infections have the potential to affect multiple physiological processes of the body. Fibroblast growth factor 15/19 (FGF15 in mice, FGF19 in humans) is a hormone that functions as a central regulator of glucose, lipid and bile acid metabolism. FGF15/19 is produced in the intestine and exert its actions on the liver by signaling through the FGFR4-βKlotho receptor complex. Here, we examined the in vivo effects of enterohepatic bacterial infection over the FGF15 endocrine axis. Results Infection triggered significant reductions in the intestinal expression of Fgf15 and its hepatic receptor components (Fgfr4 and Klb (βKlotho)). Infection also resulted in alterations of the expression pattern of genes involved in hepatobiliary function, marked reduction in gallbladder bile volumes and accumulation of hepatic cholesterol and triglycerides. The decrease in ileal Fgf15 expression was associated with liver bacterial colonization and hepatobiliary pathophysiology rather than with direct intestinal bacterial pathogenesis. Conclusions Bacterial pathogens of the enterohepatic system can disturb the homeostasis of the FGF15/19-FGFR4 endocrine axis. These results open up a possible link between FGF15/19-FGFR4 disruptions and the metabolic and nutritional disorders observed in infectious diseases.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700