r-lt;0.9; p-lt;-.01) suggesting that environmental factors such as light can affect the release of these volatile halogenated compounds by the seaweeds into the atmosphere. Compared with temperate and polar brown seaweeds, tropical species, such as T. conoides, may emit higher levels of bromoform, CHBr3, and other halocarbons. It is therefore important to investigate the contribution of tropical seaweeds towards the local atmospheric composition of halocarbons." />
Volatile halocarbon emissions by three tropical brown seaweeds under different irradiances
详细信息    查看全文
  • 作者:Fiona Seh-Lin Keng (1) (2)
    Siew-Moi Phang (1) (2)
    Noorsaadah Abd Rahman (3)
    Emma C. Leedham (4)
    Claire Hughes (5)
    Andrew D. Robinson (6)
    Neil R. P. Harris (6)
    John A. Pyle (6)
    William T. Sturges (4)
  • 关键词:Brown seaweeds ; Tropical ; Volatile halocarbons ; Emission ; Irradiance ; F v/F m
  • 刊名:Journal of Applied Phycology
  • 出版年:2013
  • 出版时间:October 2013
  • 年:2013
  • 卷:25
  • 期:5
  • 页码:1377-1386
  • 全文大小:306KB
  • 参考文献:1. Abrahamsson K, Pedersén M (2000) Evidence of the natural production of trichloroethylene (reply to the comment by Marshall et al.). Limnol Oceanogr 45:520-22
    2. Abrahamsson K, Ekdahl A, Collén J, Pedersén M (1995) Marine algae—a source of trichloroethylene and perchloroethylene. Limnol Oceanogr 40:1321-326 CrossRef
    3. Aschmann J, Sinnhuber BM, Atlas EL, Schauffler SM (2009) Modeling the transport of very shortlived substances into the tropical upper troposphere and lower stratosphere. Atmos Chem Phys 9/23:9237-247 CrossRef
    4. Baker JM, Sturges WT, Sugier J, Sunnenberg G, Lovett AA, Reeves CE, Nightingale PD, Penkett SA (2000) Emissions of CHBr3, organochlorines and organoiodines from temperate macroalgae. Chemosphere-Global Change Sci 3:93-06 CrossRef
    5. Bilger W, Schreiber U, Bock M (1995) Determination of the quantum efficiency of photosystem II and of non-photochemical quenching of chlorophyll fluorescence in the field. Oecologia 102:425-32 CrossRef
    6. Butler A, Walker JV (1993) Marine haloperoxidases. Chem Rev 93:1937-944 CrossRef
    7. Cadenas E (1989) Biochemistry of oxygen toxicity. Ann Rev Biochem 58:79-10 CrossRef
    8. Carpenter LJ, Malin G, Liss PS, Küpper FC (2000) Novel biogenic iodine-containing trihalomethanes and other short-lived halocarbons in the coastal East Atlantic. Glob Biogeoch Cycles 14:1191-204 CrossRef
    9. Class T, Ballschmiter K (1988) Chemistry of organic traces in air, VIII, sources and distribution of bromo- and bromochloromethanes in marine air and surface water of the Atlantic Ocean. J Atmos Chem 6:35-6 CrossRef
    10. Dummermuth AL, Karsten U, Fisch KM, K?nig GM, Wiencke C (2003) Responses of marine macroalgae to hydrogen-peroxide stress. J Exp Mar Biol Ecol 289:103-21 CrossRef
    11. Ekdahl A, Pedersén M, Abrahamsson K (1998) A study of the diurnal variation of biogenic volatile halocarbons. Mar Chem 63:1- CrossRef
    12. Gao K, Ji Y, Tanaka J (2004) Quantitative evaluation of wind effect during emersion on / Porhpyra haitanensis (Rhodophyta), a farmed species in southern China. Fish Sci 70:710-12 CrossRef
    13. Giese B, Laturnus F, Adams F, Wiencke C (1999) Release of volatile iodinated C1–C4 hydrocarbons by marine macroalgae from various climate zones. Environ Sci Technol 33:2432-439 CrossRef
    14. Goodwin KD, North WJ, Lidstrom ME (1997) Production of bromoform and dibromomethane by Giant Kelp: factors affecting release and comparison to anthropogenic bromine sources. Limnol Oceanogr 42:1725-734 CrossRef
    15. Gross W (1993) Peroxisomes in algae: their distribution, biochemical function, and phylogenetic importance. Prog Phycol Res 9:47-8
    16. Gschwend PM, McFarlane JK, Nerman KA (1985) Volatile halogenated organic compounds released to seawater from temperate marine macroalgae. Science 227:1023-035 CrossRef
    17. Hughes C, Malin G, Nightingale PD, Liss PS (2006) The effect of light stress on the release of volatile iodocarbons by three species of marine microalgae. Limnol Oceanogr 51:2849-854 CrossRef
    18. Küpper FC, Schweigert N, Ar Gall E, Legendre JM, Vilter H, Kloareg B (1998) Iodine uptake in Laminariales involved extracellular haloperoxidase-mediated oxidation of iodide. Planta 207:163-71 CrossRef
    19. La Barre S, Potin P, Leblanc C, Delgae L (2010) The halogenated metabolism of brown algae (Pheophyta), its biological importance and its environmental significance. Mar Drugs 8:988-010 CrossRef
    20. Laturnus FC, Wiencke C et al (1998) Influence of light conditions on the release of volatile halocarbons by Antarctic macroalgae. Mar Env Res 45:285-94 CrossRef
    21. Laturnus F, Giese B, Wiencke C, Adams FC (2000) Low-molecular-weight organoiodine and organobromine compounds released by polar macroalgae—the influence of abiotic factors. Fresenius J Anal Chem 368:297-02 CrossRef
    22. Laturnus F, Svensson T, Wiencke C (2010) Release of reactive organic halogens by the brown macroalga / Saccharina latissima after exposure to ultraviolet radiation. Polar Res 29:379-84 CrossRef
    23. Laube JC, Engel A, B?nisch H, M?bius T, Worton DR, Sturges WT, Grunow K, Schmidt U (2008) Contribution of very short-lived organic substances to stratospheric chlorine and bromine in the tropics—a case study. Atmos Chem Phys 8:7325-334 CrossRef
    24. Lin CY, Manley SL (2012) Bromoform production from seawater treated with bromoperoxidase. Limnol Oceanogr 57:1857-866 CrossRef
    25. Lovelock JE (1975) Natural halocarbons in the air and in the sea. Nature 256:193-94 CrossRef
    26. Manley SL (2002) Phytogenesis of halomethanes: a product of selection or a metabolic accident? Biogeochem 60:163-80 CrossRef
    27. Manley SL, Barbero PE (2001) Physiological constraints on bromoform (CHBr3) production by / Ulva lactuca (Chlorophyta). Limnol Oceanogr 46:1392-399 CrossRef
    28. Marshall RA, Harper DB, McRoberts WC, Dring MJ (1999) Volatile bromocarbons produced by / Falkenbergia stages of / Asparagopsis spp. (Rhodophyta). Limnol Oceanogr 44:1348-352 CrossRef
    29. McElroy MB, Salawitch RJ, Wofsy SC, Logan JA (1986) Reductions of Antarctic ozone due to synergistic interactions of chlorine and bromine. Nature 321:759-62 CrossRef
    30. Mtolera MSO, Collén J, Pedersén M, Ekdahl A, Abrahamsson K, Semesi AK (1996) Stress-induced production of volatile halogenated organic compounds in / Eucheuma denticulatum (Rhodophyta) caused by elevated pH and high light intensities. Europ J Phycol 31:89-5 CrossRef
    31. Nightingale PD, Malin G, Liss PS (1995) Production of chloroform and other low-molecular-weight halocarbons by some species of macroalgae. Limnol Oceanogr 40:680-89 CrossRef
    32. Ohsawa N, Ogata Y, Okada N, Itoh N (2001) Physiological function of bromoperoxidase in the red marine alga, / Corallina pilulifera: production of bromoform as an allelochemical and the simultaneous elimination of hydrogen peroxide. Phytochemistry 58:683-92 CrossRef
    33. Pedersén M, Collén J, Abrahamsson K, Ekdahl A (1996) Production of halocarbons from seaweeds: an oxidative stress reaction? Sci Mar 60:257-63
    34. Phang SM (2006) Seaweed resources in Malaysia: current status and future prospects. Aquat Ecosyst Health Manag 9:185-02 CrossRef
    35. Pyle JA, Warwick N, Yang X, Young PJ, Zeng G (2007) Climate/chemistry feedbacks and biogenic emissions. Phil Trans R Soc A 365:1727-740 CrossRef
    36. Pyle JA, Ashfold MJ, Harris NRP, Robinson AD, Warwick NJ, Carver GD, Gostlow B, O’Brien LM, Manning AJ, Phang SM, Yong SE, Leong KP, Ung EH, Ong S (2011) Bromoform in the tropical boundary layer of the maritime continent during OP3. Atmos Chem Phys 11:529-42 CrossRef
    37. Tan J, Lim PE, Phang SM (2013) Phylogenetic relationship of / Kappaphycus Doty and / Eucheuma J. Agardh (Solieriaceae, Rhodophyta) in Malaysia. J Appl Phycol 25:13-9
    38. Theiler R, Cook JC, Hager LP (1978) Halohydrocarbon synthesis of bromoperoxidase. Science 202:1094-096 CrossRef
    39. Tokarczyk R, Moore RM (1994) Production of volatile organohalogens by phytoplankton cultures. Geophys Res Lett 21:285-88 CrossRef
    40. Wever R, Tromp MGM, Krenn BE, Marjani A, Van Tol M (1991) Brominating activity of the seaweed / Ascophyllum nodosum: impact on the biosphere. Environ Sci Tech 25:446-49 CrossRef
    41. Winter JM, Moore BS (2009) Exploring the chemistry and biology of vanadium-dependant haloperoxidases. J Biol Chem 284:18577-8580 CrossRef
    42. Wolk CP (1968) Role of bromine in the formation of the refractile inclusions of the vesicle cells of the Bonnemaisoniaceae (Rhodophyta). Planta 78:371-75 CrossRef
    43. Wong CL, Phang SM (2004) Biomass production of two / Sargassum species at Cape Rachado, Malaysia. Hydrobiologia 512:79-8 CrossRef
    44. Wuosmaa AM, Hager LP (1990) Methyl chloride transferase: a carbocation route for biosynthesis of halometabolites. Science 249:160-62 CrossRef
  • 作者单位:Fiona Seh-Lin Keng (1) (2)
    Siew-Moi Phang (1) (2)
    Noorsaadah Abd Rahman (3)
    Emma C. Leedham (4)
    Claire Hughes (5)
    Andrew D. Robinson (6)
    Neil R. P. Harris (6)
    John A. Pyle (6)
    William T. Sturges (4)

    1. Institute of Ocean and Earth Sciences (IOES), Universiti Malaya, 50603, Kuala Lumpur, Malaysia
    2. Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
    3. Department of Chemistry, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
    4. School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, England, UK
    5. Environment Department, University of York, Heslington, York, YO10 5DD, England, UK
    6. Centre for Atmospheric Science, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, England, UK
文摘
The emission rates of eight volatile halogenated compounds by three tropical brown seaweed species collected from Cape Rachado, west coast Peninsular Malaysia, under different irradiances have been determined. A purge-and-trap sample preparation system with a gas chromatograph and mass-selective detector was used to measure a suite of halocarbons released by Sargassum binderi Sonder ex J. Agardh, Padina australis Hauck, and Turbinaria conoides (J. Agardh) Kützing. All species are widely distributed in Peninsular Malaysia, with S. binderi a dominant seaweed species at our survey site. Release of few halocarbons was found to be influenced by irradiance. Correlations were also observed between emission of certain halocarbons with photosynthetic activity, especially bromo-and iodinated compounds (0.6-lt;-em class="a-plus-plus">r-lt;0.9; p-lt;-.01) suggesting that environmental factors such as light can affect the release of these volatile halogenated compounds by the seaweeds into the atmosphere. Compared with temperate and polar brown seaweeds, tropical species, such as T. conoides, may emit higher levels of bromoform, CHBr3, and other halocarbons. It is therefore important to investigate the contribution of tropical seaweeds towards the local atmospheric composition of halocarbons.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700