Effect of Silylation and Support Porosity of Co/MCM-41 and Co/SiO2 Catalysts in Fischer–Tropsch Synthesis
详细信息    查看全文
  • 作者:Andréia Soares Zola ; Lidiane Sabino da Silva ; Artur Lemes Moretti…
  • 关键词:Fischer–Tropsch ; Cobalt species ; Mesoporous silica ; Silylation ; CO hydrogenation ; C5+ hydrocarbons
  • 刊名:Topics in Catalysis
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:59
  • 期:2-4
  • 页码:219-229
  • 全文大小:1,391 KB
  • 参考文献:1.Anuário Estatístico Brasileiro do Petróleo, Gás Natural e Biocombustíveis (2014) BR, Rio de Janeiro, Rio de Janeiro. http://​www.​anp.​gov.​br . Accessed 22 Jan 2015
    2.Ramos ALD, Marques JJ, Santos V, Freitas LS, Santos RGVM, Souza MMVM (2011) Atual estágio de desenvolvimento da tecnologia GTL e perspectivas para o Brasil. Quim Nova 34:1704–1716CrossRef
    3.Gaspari A (2008) ‘Saída liquefeita’, Retrospectiva oil and gas. Brasil Energia 335:8–10
    4.O Renascimento de uma Tecnologia Madura: O processo Fischer-Tropsch de Conversão de Gás em Combustíveis Líquidos (2002) BR, Rio de Janeiro, Rio de Janeiro. http://​www.​gee.​ie.​ufrj.​br/​publicacoes/​pdf/​2002_​renasc_​tec_​madura.​pdf . Accessed 4 Aug 2012
    5.Davis BH (2003) Fischer-Tropsch synthesis: relationship between iron catalyst composition and process variables. Catal Today 84:83–98CrossRef
    6.Martínez A, Prieto G (2007) The key role of the support surface tuning during the preparation of catalysts from reverse micellar—synthesized metal nanoparticles. Catal Commun 8:1479–1486CrossRef
    7.Martínez A, Prieto G (2007) Breaking the dispersion-reducibility dependence in oxide-supported cobalt nanoparticles. J Catal 245:470–476CrossRef
    8.JungáKim D, ManáKim J (2005) Enhancement in the reducibility of cobalt oxides on a mesoporous silica supported cobalt catalyst. Chem Commun 11:1462–1464
    9.Fu T, Lv J, Li Z (2014) Effect of carbon porosity and cobalt particle size on the catalytic performance of carbon supported cobalt Fischer-Tropsch catalysts. Ind Eng Chem Res 53:1342–1350CrossRef
    10.Tao CL, Li JL, Liew KY (2010) Effect of the pore size of Co/SBA-15 isomorphically substituted with zirconium on its catalytic performance in Fischer-Tropsch synthesis. Sci China Chem 53:2552–2559CrossRef
    11.Khodakov AY, Bechara R, Griboval-Constant A (2003) Fische–Tropsch synthesis over silica supported cobalt catalysts: mesoporous structure versus cobalt surface density. Appl Catal A 254:273–288CrossRef
    12.Khodakov AY, Griboval-Constant A, Bechara R, Zholobenko VL (2002) Pore size effects in Fischer Tropsch synthesis over cobalt-supported mesoporous sílicas. J Catal 206:230–241CrossRef
    13.Lualdi M, Lögdberg S, Carlo G, Järas S, Boutonnet M, Venezia AM, Blekkan ED, Holmen A (2011) Evidence for diffusion-controlled hydrocarbon selectivities in the Fischer–Tropsch synthesis over cobalt supported on ordered mesoporous silica. Top Catal 54:1175–1184CrossRef
    14.Martínez A, Prieto G, Rollan J (2009) Nanofibrous γ-Al2O3 as support for Co-based Fischer–Tropsch catalysts: pondering the relevance of diffusional and dispersion effects on catalytic performance. J Catal 263:292–305CrossRef
    15.Zola AS, Bidart AMF, Fraga AC, Hori CE, Sousa-Aguiar EF, Arroyo PA (2007) Cobalt supported on different zeolites for Fischer–Tropsch synthesis. Stud Surf Sci Catal 167:129–134CrossRef
    16.Szegedi A, Kónya Z, Méhn D, Solymar E, Pál-Borbély G, Horváth ZE, Biró AP, Kiricsi I (2004) Spherical mesoporous MCM-41 materials containing transition metals: synthesis and characterization. Appl Catal A 272:257–266CrossRef
    17.Tang Q, Wang Y, Zhang Q, Wan H (2003) Preparation of metallic cobalt inside NaY zeolite with high catalytic activity in Fischer–Tropsch synthesis. Catal Commun 4:253–258CrossRef
    18.Bessell S (1995) Investigation of bifunctional zeolite supported cobalt Fischer–Tropsch catalysts. Appl Catal A 126:235–244CrossRef
    19.Matsumoto A, Chen H, Tsutsumi K, Grün M, Unger K (1999) Novel route in the synthesis of MCM-41 containing framework aluminum and its characterization. Microporous Mesoporous Mater 32:55–62CrossRef
    20.Kresge CT, Leonowicz ME, Roth WJ, Vartulli JC, Beck JS (1992) Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359:710–712CrossRef
    21.Gregg SJ, Sing KSW (1982) Adsorption, surface area and porosity. Academic Press, London
    22.Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquérol J, Siemieniewska T (1985) Reporting physisorption data for gas/solid systems. Pure Appl Chem 57:603–619CrossRef
    23.Diaz JF, Balkus KJ, Bedioui F, Kurshev V, Kevan L (1997) Synthesis and characterization of cobalt-complex functionalized MCM-41. Chem Mater 9:61–67CrossRef
    24.Rodrigues EL, Bueno JMC (2002) Co/SiO 2 catalysts for selective hydrogenation of crotonaldehyde II: influence of the Co surface structure on selectivity. Appl Catal A 232:147–158CrossRef
    25.Backman LB, Rautiainen A, Lindblad M, Krause AOI (2000) Effect of support and calcination on the properties of cobalt catalysts prepared by gas phase deposition. Appl Catal A 191:55–68CrossRef
    26.Prieto G, Martínez A, Concepción P, Moreno-Tost R (2009) Cobalt particle size effects in Fischer–Tropsch synthesis: structural and in situ spectroscopic characterisation on reverse micelle-synthesised Co/ITQ-2 model catalysts. J Catal 266:129–144CrossRef
    27.Su YK, Shen CM, Yang TZ, Yang HT, Gao HJ, Li HL (2005) The dependence of Co nanoparticle sizes on the ratio of surfactants and the influence of different crystal sizes on magnetic properties. Appl Phys A 81:569–572CrossRef
    28.Lim S, Ciuparu D, Pak C, Dobek F, Chen Y, Harding D, Pfefferle L, Haller G (2003) Synthesis and characterization of highly ordered Co-MCM-41 for production of aligned single walled carbon nanotubes (SWNT). J Phys Chem B 107:11048–11056CrossRef
    29.Girardon J-S, Quinet E, Griboval-Constant A, Chernavskii PA, Gengembre L, Khodakov AY (2007) Cobalt dispersion, reducibility, and surface sites in promoted silica-supported Fischer–Tropsch catalysts. J Catal 248:143–157CrossRef
    30.Katsoulidis AP, Petrakis DE, Armatas GS, Trikalitis PN, Pomonis PJ (2006) Ordered mesoporous CoO x/MCM-41 materials exhibiting long-range self-organized nanostructured morphology. Microporous Mesoporous Mater 92:71–80CrossRef
    31.Szegedi A, Popova M, Minchev C (2009) Catalytic activity of Co/MCM-41 and Co/SBA-15 materials in toluene oxidation. J Mater Sci 44:6710–6716CrossRef
    32.Lou Z, Wang R, Sun H, Chen Y, Yang Y (2008) Direct synthesis of highly ordered Co-SBA-15 mesoporous materials by the pH-adjusting approach. Microporous Mesoporous Mater 110:347–354CrossRef
    33.Jia L, Jia L, Li D, Hou B, Wang J, Sun Y (2011) Silylated Co/SBA-15 catalysts for Fischer–Tropsch synthesis. J Solid State Chem 184:488–493CrossRef
    34.Tang HQ, Liew KY, Li JL (2012) Cobalt catalysts supported on silica nanotubes for Fischer-Tropsch synthesis. Sci China Chem 55:145–150CrossRef
    35.Friedel RA, Anderson RB (1950) Composition of synthetic liquid fuels. I. product distribution and analysis of C5—C8 paraffin isomers from cobalt catalyst1. J Am Chem Soc 72:1212–1215CrossRef
  • 作者单位:Andréia Soares Zola (1)
    Lidiane Sabino da Silva (1)
    Artur Lemes Moretti (1)
    Adriano do Couto Fraga (2)
    Eduardo Falabella Sousa-Aguiar (2) (3)
    Pedro Augusto Arroyo (1)

    1. Chemical Engineering Department, State University of Maringá, Av. Colombo 5790, Maringá, PR, 87020-900, Brazil
    2. PETROBRAS S.A. CENPES R&D Centre, Cidade Universitária, Av. Horácio Macedo, 950, Cidade Universitária, Rio de Janeiro, RJ, 21.941-915, Brazil
    3. Department of Organic Processes, School of Chemistry, UFRJ – CT, Bloco E, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, 21941-909, Brazil
  • 刊物主题:Catalysis; Physical Chemistry; Pharmacy; Industrial Chemistry/Chemical Engineering; Characterization and Evaluation of Materials;
  • 出版者:Springer US
  • ISSN:1572-9028
文摘
The effect of silylation in the performance of cobalt catalysts supported on mesoporous silica MCM-41 and non-porous silica in Fischer–Tropsch synthesis (FTS) at process conditions (240 °C, 10 bar, H2/CO ratio = 2.15) was evaluated. Catalysts with a concentration of 5 % metallic phase were synthesized by wet impregnation on silylated and non-silylated supports. The catalysts were characterized by nuclear magnetic resonance, X-ray diffraction, N2-adsorption/desorption, temperature programmed reduction, diffuse reflectance spectroscopy in the ultraviolet visible region and high resolution transmission electron microscope. The characterization analyses showed the silylation treatment cause disorganization and partial blockage in the structure of MCM-41 support. Consequently, it were observed less CO overall conversion and selectivity towards C5+ hydrocarbons compared with the FTS catalyst prepared with non-silylated support. Also, according to the results of the catalytic evaluation, CO overall conversion seems to be related to the accessibility of the reactants, whereas log-chain hydrocarbons selectivity relates to the ability to reinsert olefins, in conjunction with metal particle size, which is directly connected with metal-support interaction. Keywords Fischer–Tropsch Cobalt species Mesoporous silica Silylation CO hydrogenation C5+ hydrocarbons

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700