On a Kinetic Fitzhugh–Nagumo Model of Neuronal Network
详细信息    查看全文
  • 作者:S. Mischler ; C. Quiñinao ; J. Touboul
  • 刊名:Communications in Mathematical Physics
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:342
  • 期:3
  • 页码:1001-1042
  • 全文大小:4,942 KB
  • 参考文献:1.Abbott, L., Van Vreeswijk, C.: Asynchronous states in networks of pulse-coupled neuron. Phys. Rev. 48, 1483–1490 (1993)
    2.Amari, S.: Characteristics of random nets of analog neuron-like elements. Syst. Man Cybernet. IEEE SMC-2, 643–657 (1972)
    3.Amari, S.-I.: Dynamics of pattern formation in lateral-inhibition type neural fields. Biol. Cybern. 27(2), 77–87 (1977)
    4.Amit D., Brunel N.: Model of global spontaneous activity and local structured delay activity during delay periods in the cerebral cortex. Cereb. Cortex. 7, 237–252 (1997)CrossRef
    5.Baladron, J., Fasoli, D., Faugeras, O., Touboul, J.: Mean field description of and propagation of chaos in recurrent multipopulation networks of Hodgkin–Huxley and Fitzhugh–Nagumo neurons. J. Math. Neurosci. 2, 10 (2012). arXiv:​1110.​4294
    6.Bressloff P.: Stochastic neural field theory and the system-size expansion. SIAM J. Appl. Math. 70, 1488–1521 (2009)CrossRef MathSciNet MATH
    7.Bressloff P.: Spatiotemporal dynamics of continuum neural fields. J. Phys. A: Math. Theor. 45, 033001 (2012)CrossRef ADS MathSciNet
    8.Brezis, H.: Analyse fonctionnelle. Théorie et applications [Theory and applications]. Collection Mathématiques Appliquées pour la Maîtrise [Collection of Applied Mathematics for the Master’s Degree]. Masson, Paris (1983)
    9.Brunel N., Hakim V.: Fast global oscillations in networks of integrate-and-fire neurons with low firing rates. Neural Comput. 11, 1621–1671 (1999)CrossRef
    10.Buice M., Cowan J.: Field-theoretic approach to fluctuation effects in neural networks. Phys. Rev. E 75, 5 (2007)CrossRef MathSciNet
    11.Cáceres, M.J., Carrillo, J.A., Perthame, B.: Analysis of nonlinear noisy integrate & fire neuron models: blow-up and steady states. J. Math. Neurosci. 1 33 (2011)
    12.Cai D., Tao L., Shelley M., McLaughlin D.: An effective kinetic representation of fluctuation-driven neuronal networks with application to simple and complex cells in visual cortex. Proc. Natl. Acad. Sci. 101(20), 7757–7762 (2004)CrossRef ADS
    13.El Boustani S., Destexhe A.: A master equation formalism for macroscopic modeling of asynchronous irregular activity states. Neural Comput. 21(1), 46–100 (2009)CrossRef MathSciNet MATH
    14.Ermentrout G.B., Cowan J.D.: A mathematical theory of visual hallucination patterns. Biol. Cybern. 34(3), 137–150 (1979)CrossRef MathSciNet MATH
    15.Escobedo M., Mischler S., Rodriguez Ricard M.: On self-similarity and stationary problem for fragmentation and coagulation models. Ann. Inst. H. Poincaré Anal. Non Linéaire 22(1), 99–125 (2005)CrossRef ADS MathSciNet MATH
    16.Ethier S., Kurtz T.: Markov Processes: Characterization and Convergence, 9 edn. Willey, NY (1986)CrossRef MATH
    17.FitzHugh, R.: Mathematical models of threshold phenomena in the nerve membrane. Bull. Math. Biol. 17 (4), 257–278, 0092–8240 (1955)
    18.Gamba I.M., Panferov V., Villani C.: Upper Maxwellian bounds for the spatially homogeneous Boltzmann equation. Arch. Ration. Mech. Anal. 194(1), 253–282 (2009)CrossRef MathSciNet MATH
    19.Gualdani, M.P., Mischler, S., Mouhot, C.: Factorization of non-symmetric operators and exponential H-Theorem. (2013). arXiv:​1006.​5523
    20.Hérau F.: Short and long time behavior of the Fokker–Planck equation in a confining potential and applications. J. Funct. Anal. 244(1), 95–118 (2007)CrossRef MathSciNet MATH
    21.Hodgkin A., Huxley A.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952)CrossRef
    22.Kandel E., Schwartz J., Jessel T.: Principles of Neural Science, 4th edn. McGraw-Hill, New York (2000)
    23.Kato, T.: Perturbation Theory for Linear Operators. Classics in Mathematics. Springer, Berlin (1995). Reprint of the 1980 edition
    24.Mao X.: Stochastic Differential Equations and Applications. Elsevier, Amsterdam (2007)MATH
    25.Mischler, S., Mouhot, C.: Exponential stability of slowly decaying solutions to the kinetic Fokker–Planck equation. (2015). arXiv:​1412.​7487
    26.Mischler S., Mouhot C.: Stability, convergence to self-similarity and elastic limit for the Boltzmann equation for inelastic hard spheres. Commun. Math. Phys. 288(2), 431–502 (2009)CrossRef ADS MathSciNet MATH
    27.Mischler, S., Scher, J.: Semigroup spectral analysis and growth-fragmentation equation. Ann. Inst. H. Poincaré Anal. Non Linéaire (2014). doi:10.​1016/​j.​anihpc.​2015.​01.​007 arXiv:​1310.​7773 .
    28.Nagumo J., Arimoto S., Yoshizawa S.: An active pulse transmission line simulating nerve axon. Proc. IRE 50(10), 2061–2070 (1962)CrossRef
    29.Pakdaman, K., Perthame, B., Salort, D.: Dynamics of a structured neuron population. Nonlinearity 23, 55–75 (2010)
    30.Pakdaman K., Perthame B., Salort D.: Relaxation and self-sustained oscillations in the time elapsed neuron network model. SIAM J. Appl. Math. 73(3), 1260–1279 (2013)CrossRef MathSciNet MATH
    31.Pakdaman, K., Perthame, B., Salort, D.: Adaptation and fatigue model for neuron networks and large time asymptotics in a nonlinear fragmentation equation J. Math. Neurosci. 4, 26 (2014)
    32.Perthame B., Salort D.: On a voltage-conductance kinetic system for integrate and fire neural networks. KRM 6(4), 841–864 (2013)CrossRef MathSciNet MATH
    33.Rangan A.V., Cai D., Tao L.: Numerical methods for solving moment equations in kinetic theory of neuronal network dynamics. J. Comput. Phys. 221(2), 781798 (2007)CrossRef MathSciNet
    34.Rangan A.V., Kovačič G., Cai D.: Kinetic theory for neuronal networks with fast and slow excitatory conductances driven by the same spike train. Phys. Rev. E 77, 041915 (2008)CrossRef ADS MathSciNet
    35.Touboul J., Ermentrout G.B.: Finite-size and correlation-induced effects in mean-field dynamics. J. Comput. Neurosci. 31(3), 453–484 (2011)CrossRef MathSciNet
    36.Tristani, I.: Boltzmann equation for granular media with thermal force in a weakly inhomogeneous setting. J. Funct. Anal. (2015). doi:10.​1016/​j.​jfa.​2015.​09.​025 arXiv:​1311.​5168 .
    37.Villani, C.: Hypocoercivity (950). Mem. Am. Math. Soc. 202, iv+141 (2009)
    38.Wilson H., Cowan J.: Excitatory and inhibitory interactions in localized populations of model neurons. Biophys. J. 12, 1–24 (1972)CrossRef ADS
    39.Wilson H., Cowan J.: A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Biol. Cybern. 13(2), 55–80 (1973)MATH
  • 作者单位:S. Mischler (1)
    C. Quiñinao (2) (3)
    J. Touboul (4)

    1. Université Paris-Dauphine & IUF CEREMADE, UMR CNRS 7534, Place du Maréchal de Lattre de Tassigny, 75775, Paris Cedex 16, France
    2. Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie, CNRS UMR, 7598, 4 place de Jussieu, 75005, Paris, France
    3. Mathematical Neuroscience Team, CIRB - Collège de France, 11 place Marcelin-Berthelot, 75005, Paris, France
    4. Mathematical Neuroscience Team & INRIA Paris-Rocquencourt, Mycenae Team, CIRB - Collège de France, 11 place Marcelin-Berthelot, 75005, Paris, France
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Mathematical and Computational Physics
    Quantum Physics
    Quantum Computing, Information and Physics
    Complexity
    Statistical Physics
    Relativity and Cosmology
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-0916
文摘
We investigate existence and uniqueness of solutions of a McKean–Vlasov evolution PDE representing the macroscopic behaviour of interacting Fitzhugh–Nagumo neurons. This equation is hypoelliptic, nonlocal and has unbounded coefficients. We prove existence of a solution to the evolution equation and non trivial stationary solutions. Moreover, we demonstrate uniqueness of the stationary solution in the weakly nonlinear regime. Eventually, using a semigroup factorisation method, we show exponential nonlinear stability in the small connectivity regime.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700