Input Displacement Neuro-fuzzy Control and Object Recognition by Compliant Multi-fingered Passively Adaptive Robotic Gripper
详细信息    查看全文
  • 作者:Dalibor Petković ; Shahaboddin Shamshirband…
  • 关键词:Multi ; fingered gripper ; Underactuated gripper ; Embedded sensors ; Object recognizing ; ANFIS controller
  • 刊名:Journal of Intelligent and Robotic Systems
  • 出版年:2016
  • 出版时间:May 2016
  • 年:2016
  • 卷:82
  • 期:2
  • 页码:177-187
  • 全文大小:2,147 KB
  • 参考文献:1.Petković, D., Pavlović, N.D.: A New Principle of Adaptive Compliant Gripper, Mechanisms, pp 143–150. Springer, Berlin. ISBN 978-94-007-2726-7 c
    2.Becedas, J., Gonzales, E., Payo, I., Feliu, V.: On Line Visual-Grasping System Based on a Gripper with Two Flexible Fingers, Preprints of the 18th IFAC World Congress Milano (Italy) (2011)
    3.Harald, H.: Dextrous manipulation with multifingered robot hands including rolling and slipping of the fingertips. Robot. Auton. Syst. 14, 29–53 (1995)CrossRef
    4.Dechev, H., Cleghorn, W.L., Naumann, S.: Multiple finger, passive adaptive grasp prosthetic hand. Mech. Mach. Theory 36, 1157–1173 (2001)CrossRef MATH
    5.Osswald, D., Martin, J., Burghart, C., Mikut, R., Worn, H., Bretthauer, G.: Integrating a flexible anthropomorphic, robot hand into the control, system of a humanoid robot. Robot. Auton. Syst. 48, 213–221 (2004)CrossRef
    6.Arimoto, S.: Intelligent control of multi-fingered hands. Annu. Rev. Control. 28, 75–85 (2004)CrossRef
    7.Carrozza, M.C., Suppo, C., Sebastiani, F., Massa, B., Vecchi, F., Lazzarini, R., Cutkosky, M.R., Dario, P.: The SPRING hand: development of a self-adaptive prosthesis for restoring natural grasping. Auton. Robot. 16, 125–141 (2004)CrossRef
    8.Montambault, S., Gosselin, C.M.: Analysis of underactuated mechanical grippers. J. Mech. Des. 123, 367–345 (2001)CrossRef
    9.Russell, R.A., Wijaya, J.A.: Object Location and Recognition Using Whisker Sensors, Australian Conference on Robotics and Automation. In: CD-ROM Proceedings ISBN (2003)
    10.Staretu, I., Itu, A.: Software Module for Objects Shape Tracing and Recognition Before Gripping. In: Proceedings of 2011 International Conference on Optimization of the Robots and ManipulatorsProceedings of 2011 International Conference on Optimization of the Robots and Manipulators, Sinaia, Romania, Mai, pp 26–28 (2011)
    11.Allen, P., Bajcsy, R.: Robotic Object Recognition Using Vision and Touch. In: Proceedings of the 9th International Joint Conference on Artificial Intelligence (1987)
    12.Abdullah, S.C., Wada, J., Ohka, M., Yussof, H.: Object Exploration Using a Three-Axis Tactile Sensing Information. J. Comput. Sci. 7(4), 499–504 (2012)CrossRef
    13.Issa, M., Petković, D., Pavlović, N.D., Zentner, L.: Embedded-sensing elements made of conductive silicone rubber for compliant robotic joint, 56th Internationales Wissenschaftliches Kolloquium TU Ilmenau, (CD-ROM), Ilmenau, paper id 1231 (2011)
    14.Jang, J.-S.R.: ANFIS: adaptive-network-based fuzzy inference systems. IEEE Trans. Syst. Man Cybern. 23, 665–685 (1993)CrossRef
    15.Ghandoor, A.Al., Samhouri, M.: Electricity consumption in the industrial sector of jordan: application of multivariate linear regression and adaptive neuro-fuzzy techniques. Jordan J. Mech. Ind. Eng. 3(1), 69–76 (2009)
    16.Singh, R., Kianthola, A., Singh, T.N.: Estimation of elastic constant of rocks using an ANFIS approach. Appl. Soft Comput. 12, 40–45 (2012)CrossRef
    17.Hosoz, M., Ertunc, H.M., Bulgurcu, H.: An adaptive neuro-fuzzy inference system model for predicting the performance of a refrigeration system with a cooling tower. Expert Syst. Appl. 38, 14148–14155 (2011)
    18.Shamshirband, S., Petković, D., Hashim, R., Motamedi, S.: Adaptive neuro-fuzzy methodology for noise assessment of wind turbine. PLoS ONE 9, e103414 (2014). doi: 10.​1371/​journal.​pone.​0103414
    19.Shamshirband, S., Petković, D., Hashim, R., Motamedi, S., Anuar, N.B.: An appraisal of wind turbine wake models by adaptive neuro-fuzzy methodology. Int. J. Electr. Power Energy Syst. 63, 618–624 (2014). ISSN 0142-0615. doi: 10.​1016/​j.​ijepes.​2014.​06.​022
    20.Kurnaz, S., Cetin, O., Kaynak, O.: Adaptive neuro-fuzzy inference system based autonomous flight control of unmanned air vehicles. Expert Syst. Appl. 37, 1229–1234 (2010)CrossRef
    21.Ravi, S., Sudha, M., Balakrishnan, P.A.: Design of intelligent self-tuning GA ANFIS temperature controller for plastic extrusion system. Model. Simul. Eng., 1–8 (2011)
    22.Aldair, A.A., Wang, W.J.: Design an intelligent controller for full vehicle nonlinear active suspension systems. Int. J. Smart Sens. Intell. Syst. 4(2), 224–243 (2011)
    23.Dastranj, M.R., Ebroahimi, E., Changizi, N., Sameni, E.: Control DC motorspeed with adaptive neuro-fuzzy control (ANFIS). Aust. J. Basic Appl. Sci. 5(10), 1499–1504 (2011)
    24.Wahida Banu, R.S.D, Shakila Banu, A, Manoj, D: Identification and Control of Nonlinear Systems using Soft Computing Techniques. Int. J. Model. Optim. 1(1), 24–28 (2011)
    25.Grigorie, T.L., Botez, R.M.: Adaptive neuro-fuzzy inference system-based controllers for smart material actuator modelling. J. Aerosp. Eng., 655–668 (2009)
    26.Akcayol, M.A.: Application of adaptive neuro-fuzzy controller for SRM. Adv. Eng. Softw. 35, 129–137 (2004)CrossRef
    27.Moustakidis, S.P., Rovithakis, G.A., Theocharis, J.B.: An adaptive neuro-fuzzy tracking control for multi-input nonlinear dynamic systems. Automatica 44, 1418–1425 (2008)MathSciNet CrossRef MATH
    28.Valenta, L.: Mechanical and electrical testing of electrically conductive silicone rubber. Mater. Sci. Forum 4, 179–184 (2008)CrossRef
    29.Petković, D., Pavlović, N.D.: Investigation and Adaptive Neuro-Fuzzy Estimation of Mechanical/Electrical Properties of Conductive Silicone Rubber, 34th International Conference on Production Engineering, Nis, Serbia (2011)
    30.Petković, D., Issa, M., Pavlović, N.D., Zentner, L.: Passively Adaptive Compliant Gripper, Mechanisms, Mechanical Transmissions and Robotics, Applied Mechanics and Materials, Vol. 162, Trans Tech Publications. ISBN 978-3-03785-395-5, 316-325 (2012)
    31.Issa, M., Petković, D., Pavlović, N.D., Zentner, L.: Sensor elements made of conductive silicone rubber for passively compliant gripper. Int. J. Adv. Manuf. Technol. 69(5), 1527–1536 (2013). doi:10.​1007/​s00170-013-5085-8 CrossRef
  • 作者单位:Dalibor Petković (1)
    Shahaboddin Shamshirband (2)
    Nor Badrul Anuar (2)
    Aznul Qalid Md Sabri (2)
    Zulkanain Bin Abdul Rahman (3)
    Nenad D. Pavlović (1)

    1. Faculty of Mechanical Engineering, Deparment for Mechatronics and Control, University of Niš, Aleksandra Medvedeva 14, 18000, Niš, Serbia
    2. Department of Computer System and Technology, Faculty of Computer Science and Information Technology, University of Malaya, 50603, Kuala Lumpur, Malaysia
    3. Department of History, Faculty of Arts and Social Sciences Building, University of Malaya, 50603, Kuala Lumpur, Malaysia
  • 刊物类别:Engineering
  • 刊物主题:Automation and Robotics
    Electronic and Computer Engineering
    Artificial Intelligence and Robotics
    Mechanical Engineering
  • 出版者:Springer Netherlands
  • ISSN:1573-0409
文摘
The requirement for new flexible adaptive grippers is the ability to detect and recognize objects in their environments. It is known that robotic manipulators are highly nonlinear systems, and an accurate mathematical model is difficult to obtain, thus making it difficult make decision strategies using conventional techniques. Here, an adaptive neuro fuzzy inference system (ANFIS) for controlling input displacement and object recognition of a new adaptive compliant gripper is presented. The grasping function of the proposed adaptive multi-fingered gripper relies on the physical contact of the finger with an object. This design of the each finger has embedded sensors as part of its structure. The use of embedded sensors in a robot gripper gives the control system the ability to control input displacement of the gripper and to recognize particular shapes of the grasping objects. Fuzzy based controllers develop a control signal according to grasping object shape which yields on the firing of the rule base. The selection of the proper rule base depending on the situation can be achieved by using an ANFIS strategy, which becomes an integrated method of approach for the control purposes. In the designed ANFIS scheme, neural network techniques are used to select a proper rule base, which is achieved using the back propagation algorithm. The simulation results presented in this paper show the effectiveness of the developed method.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700