Genome-wide characterisation of the Gcn5 histone acetyltransferase in budding yeast during stress adaptation reveals evolutionarily conserved and diverged roles
详细信息    查看全文
  • 作者:Yongtao Xue-Franzén (1) (2)
    Anna Johnsson (1) (2)
    David Brodin (2)
    Johan Henriksson (1) (2)
    Thomas R Bürglin (1) (2)
    Anthony PH Wright (1) (2)
  • 刊名:BMC Genomics
  • 出版年:2010
  • 出版时间:December 2010
  • 年:2010
  • 卷:11
  • 期:1
  • 全文大小:3724KB
  • 参考文献:1. Prud'homme B, Gompel N, Carroll SB: Emerging principles of regulatory evolution. / Proc Natl Acad Sci USA 2007, 104 (Suppl 1) : 8605-612. CrossRef
    2. Wray GA: The evolutionary significance of cis-regulatory mutations. / Nat Rev Genet 2007, 8 (3) : 206-16. CrossRef
    3. Wray GA, Hahn MW, Abouheif E, Balhoff JP, Pizer M, Rockman MV, Romano LA: The evolution of transcriptional regulation in eukaryotes. / Mol Biol Evol 2003, 20 (9) : 1377-419. CrossRef
    4. Beskow A, Wright AP: Comparative analysis of regulatory transcription factors in Schizosaccharomyces pombe and budding yeasts. / Yeast 2006, 23 (13) : 929-35. CrossRef
    5. Kummerfeld SK, Teichmann SA: DBD: a transcription factor prediction database. / Nucleic Acids Res 2006, (34 Database) : D74-1.
    6. Ranea JA, Buchan DW, Thornton JM, Orengo CA: Evolution of protein superfamilies and bacterial genome size. / J Mol Biol 2004, 336 (4) : 871-87. CrossRef
    7. van Nimwegen E: Scaling laws in the functional content of genomes. / Trends Genet 2003, 19 (9) : 479-84. CrossRef
    8. Bürglin TR: / Homeodomain Proteins. Encyclopedia of Molecular Cell Biology and Molecular Medicine. Wiley-VCH Verlag GmbH & Co., Weinheim; 2005.
    9. Burglin TR: The homeobox genes of Encephalitozoon cuniculi (Microsporidia) reveal a putative mating-type locus. / Dev Genes Evol 2003, 213 (1) : 50-2.
    10. Mattick JS: A new paradigm for developmental biology. / J Exp Biol 2007, 210 (Pt 9) : 1526-547. CrossRef
    11. Lynch VJ, Wagner GP: Resurrecting the role of transcription factor change in developmental evolution. / Evolution 2008, 62 (9) : 2131-154. CrossRef
    12. Wagner GP, Lynch VJ: The gene regulatory logic of transcription factor evolution. / Trends Ecol Evol 2008, 23 (7) : 377-85. CrossRef
    13. Brownell JE, Zhou J, Ranalli T, Kobayashi R, Edmondson DG, Roth SY, Allis CD: Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation. / Cell 1996, 84 (6) : 843-51. CrossRef
    14. Grant PA, Duggan L, Cote J, Roberts SM, Brownell JE, Candau R, Ohba R, Owen-Hughes T, Allis CD, Winston F, / et al.: Yeast Gcn5 functions in two multisubunit complexes to acetylate nucleosomal histones: characterization of an Ada complex and the SAGA (Spt/Ada) complex. / Genes Dev 1997, 11 (13) : 1640-650. CrossRef
    15. Grant PA, Eberharter A, John S, Cook RG, Turner BM, Workman JL: Expanded lysine acetylation specificity of Gcn5 in native complexes. / J Biol Chem 1999, 274 (9) : 5895-900. CrossRef
    16. Helmlinger DMS, Villén J, Gygi SP, B?hler J, Winston F: The S. pombe SAGA complex controls the switch from proliferation to sexual differentiation through the opposing roles of its subunits Gcn5 and Spt8. / Genes Dev 2008, 22 (22) : 3184-195. CrossRef
    17. Rosaleny LE, Ruiz-Garcia AB, Garcia-Martinez J, Perez-Ortin JE, Tordera V: The Sas3p and Gcn5p histone acetyltransferases are recruited to similar genes. / Genome Biol 2007, 8 (6) : R119. CrossRef
    18. Utley RT, Ikeda K, Grant PA, Cote J, Steger DJ, Eberharter A, John S, Workman JL: Transcriptional activators direct histone acetyltransferase complexes to nucleosomes. / Nature 1998, 394 (6692) : 498-02. CrossRef
    19. Bhaumik SR, Raha T, Aiello DP, Green MR: In vivo target of a transcriptional activator revealed by fluorescence resonance energy transfer. / Genes Dev 2004, 18 (3) : 333-43. CrossRef
    20. Johnsson A, Durand-Dubief M, Xue-Franzen Y, Ronnerblad M, Ekwall K, Wright A: HAT-HDAC interplay modulates global histone H3K14 acetylation in gene-coding regions during stress. / EMBO Rep 2009, 10 (9) : 1009-014. CrossRef
    21. Wang L, Mizzen C, Ying C, Candau R, Barlev N, Brownell J, Allis CD, Berger SL: Histone acetyltransferase activity is conserved between yeast and human GCN5 and is required for complementation of growth and transcriptional activation. / Mol Cell Biol 1997, 17 (1) : 519-27.
    22. Johnsson A, Xue-Franzen Y, Lundin M, Wright AP: Stress-specific role of fission yeast Gcn5 histone acetyltransferase in programming a subset of stress response genes. / Eukaryot Cell 2006, 5 (8) : 1337-346. CrossRef
    23. Huisinga KL, Pugh BF: A genome-wide housekeeping role for TFIID and a highly regulated stress-related role for SAGA in Saccharomyces cerevisiae. / Mol Cell 2004, 13 (4) : 573-85. CrossRef
    24. Dujon B, Sherman D, Fischer G, Durrens P, Casaregola S, Lafontaine I, De Montigny J, Marck C, Neuveglise C, Talla E, / et al.: Genome evolution in yeasts. / Nature 2004, 430 (6995) : 35-4. CrossRef
    25. Wang L, Liu L, Berger SL: Critical residues for histone acetylation by Gcn5, functioning in Ada and SAGA complexes, are also required for transcriptional function in vivo. / Genes Dev 1998, 12 (5) : 640-53. CrossRef
    26. Teige M, Scheikl E, Reiser V, Ruis H, Ammerer G: Rck2, a member of the calmodulin-protein kinase family, links protein synthesis to high osmolarity MAP kinase signaling in budding yeast. / Proc Natl Acad Sci USA 2001, 98 (10) : 5625-630. CrossRef
    27. Uesono Y, Toh EA: Transient inhibition of translation initiation by osmotic stress. / J Biol Chem 2002, 277 (16) : 13848-3855. CrossRef
    28. Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Eisen MB, Storz G, Botstein D, Brown PO: Genomic expression programs in the response of yeast cells to environmental changes. / Mol Biol Cell 2000, 11 (12) : 4241-257.
    29. Han Q, Lu J, Duan J, Su D, Hou X, Li F, Wang X, Huang B: Gcn5- and Elp3-induced histone H3 acetylation regulates hsp70 gene transcription in yeast. / Biochem J 2008, 409 (3) : 779-88. CrossRef
    30. Ricci AR, Genereaux J, Brandl CJ: Components of the SAGA histone acetyltransferase complex are required for repressed transcription of ARG1 in rich medium. / Mol Cell Biol 2002, 22 (12) : 4033-042. CrossRef
    31. Helmlinger D, Marguerat S, Villen J, Gygi SP, Bahler J, Winston F: The S. pombe SAGA complex controls the switch from proliferation to sexual differentiation through the opposing roles of its subunits Gcn5 and Spt8. / Genes Dev 2008, 22 (22) : 3184-195. CrossRef
    32. Hu Z, Killion PJ, Iyer VR: Genetic reconstruction of a functional transcriptional regulatory network. / Nat Genet 2007, 39 (5) : 683-87. CrossRef
    33. Robert F, Pokholok DK, Hannett NM, Rinaldi NJ, Chandy M, Rolfe A, Workman JL, Gifford DK, Young RA: Global position and recruitment of HATs and HDACs in the yeast genome. / Mol Cell 2004, 16 (2) : 199-09. CrossRef
    34. Millar CB, Grunstein M: Genome-wide patterns of histone modifications in yeast. / Nat Rev Mol Cell Biol 2006, 7 (9) : 657-66. CrossRef
    35. Li B, Carey M, Workman JL: The role of chromatin during transcription. / Cell 2007, 128 (4) : 707-19. CrossRef
    36. Govind CK, Zhang F, Qiu H, Hofmeyer K, Hinnebusch AG: Gcn5 promotes acetylation, eviction, and methylation of nucleosomes in transcribed coding regions. / Mol Cell 2007, 25 (1) : 31-2. CrossRef
    37. Wood V: Comparative Genomics Using Fungi as Models, Topic in Current Genetics, Volumn15, Schizosaccharomyces pombe comparative genomics; from sequence to systems. / Springer 2006., 15:
    38. Lelandais G, Tanty V, Geneix C, Etchebest C, Jacq C, Devaux F: Genome adaptation to chemical stress: clues from comparative transcriptomics in Saccharomyces cerevisiae and Candida glabrata. / Genome Biol 2008, 9 (11) : R164. CrossRef
    39. Oliva A, Rosebrock A, Ferrezuelo F, Pyne S, Chen H, Skiena S, Futcher B, Leatherwood J: The cell cycle-regulated genes of Schizosaccharomyces pombe. / PLoS Biol 2005, 3 (7) : e225. CrossRef
    40. Bjorklund S, Gustafsson CM: The yeast Mediator complex and its regulation. / Trends Biochem Sci 2005, 30 (5) : 240-44. CrossRef
    41. Sikorski RS, Hieter P: A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. / Genetics 1989, 122 (1) : 19-7.
    42. Xue Y, Haas SA, Brino L, Gusnanto A, Reimers M, Talibi D, Vingron M, Ekwall K, Wright AP: A DNA microarray for fission yeast: minimal changes in global gene expression after temperature shift. / Yeast 2004, 21 (1) : 25-9. CrossRef
    43. Johnson WE, Li W, Meyer CA, Gottardo R, Carroll JS, Brown M, Liu XS: Model-based analysis of tiling-arrays for ChIP-chip. / Proc Natl Acad Sci USA 2006, 103 (33) : 12457-2462. CrossRef
    44. Zeeberg BR, Feng W, Wang G, Wang MD, Fojo AT, Sunshine M, Narasimhan S, Kane DW, Reinhold WC, Lababidi S, / et al.: GoMiner: a resource for biological interpretation of genomic and proteomic data. / Genome Biol 2003, 4 (4) : R28. CrossRef
  • 作者单位:Yongtao Xue-Franzén (1) (2)
    Anna Johnsson (1) (2)
    David Brodin (2)
    Johan Henriksson (1) (2)
    Thomas R Bürglin (1) (2)
    Anthony PH Wright (1) (2)

    1. School of Life Sciences, S?dert?rn University, SE-141 89, Huddinge, Sweden
    2. Center for Biosciences, Department of Biosciences and Nutrition, Karolinska Institute, SE-141 83, Huddinge, Sweden
文摘
Background Gcn5 is a transcriptional coactivator with histone acetyltransferase activity that is conserved with regard to structure as well as its histone substrates throughout the eukaryotes. Gene regulatory networks within cells are thought to be evolutionarily diverged. The use of evolutionarily divergent yeast species, such as S. cerevisiae and S. pombe, which can be studied under similar environmental conditions, provides an opportunity to examine the interface between conserved regulatory components and their cellular applications in different organisms. Results We show that Gcn5 is important for a common set of stress responses in evolutionarily diverged yeast species and that the activity of the conserved histone acetyltransferase domain is required. We define a group of KCl stress response genes in S. cerevisiae that are specifically dependent on Gcn5. Gcn5 is localised to many Gcn5-dependent genes including Gcn5 repressed targets such as FLO8. Gcn5 regulates divergent sets of KCl responsive genes in S. cerevisiae and S. pombe. Genome-wide localization studies showed a tendency for redistribution of Gcn5 during KCl stress adaptation in S. cerevisiae from short genes to the transcribed regions of long genes. An analogous redistribution was not observed in S. pombe. Conclusions Gcn5 is required for the regulation of divergent sets of KCl stress-response genes in S. cerevisiae and S. pombe even though it is required a common group of stress responses, including the response to KCl. Genes that are physically associated with Gcn5 require its activity for their repression or activation during stress adaptation, providing support for a role of Gcn5 as a corepressor as well as a coactivator. The tendency of Gcn5 to re-localise to the transcribed regions of long genes during KCl stress adaptation suggests that Gcn5 plays a specific role in the expression of long genes under adaptive conditions, perhaps by regulating transcriptional elongation as has been seen for Gcn5 in S. pombe. Interestingly an analogous redistribution of Gcn5 is not seen in S. pombe. The study thus provides important new insights in relation to why coregulators like Gcn5 are required for the correct expression of some genes but not others.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700