Widely linear MMSE precoding and equalization techniques for SC-FDE systems
详细信息    查看全文
  • 作者:Bruno S Chang (4)
    Carlos AF da Rocha (5)
    Didier Le Ruyet (6)
    Daniel Roviras (6)

    4. Electronics Department
    ; Federal University of Technology - Paran谩 ; Curitiba ; 80230-901 ; Brazil
    5. Communications Research Group
    ; Federal University of Santa Catarina ; Florian贸polis ; 88040-900 ; Brazil
    6. CEDRIC/LAETITIA Laboratory
    ; Conservatoire National des Arts et M茅tiers ; 75141 ; Paris C茅dex 03 ; France
  • 关键词:SC ; FDE ; Widely linear processing ; Equalization ; Tomlinson ; Harashima precoding
  • 刊名:EURASIP Journal on Advances in Signal Processing
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:2014
  • 期:1
  • 全文大小:1,314 KB
  • 参考文献:1. Sari, H, Karam, G, Jeanclaude, I (1995) Transmission techniques for digital terrestrial TV broadcasting. IEEE Commun. Mag 33: pp. 100-109 CrossRef
    2. Falconer, D, Ariyavisitakul, SL, Benyamin-Seeyar, A, Eidson, B (2002) Frequency domain equalization for single-carrier broadband wireless systems. IEEE Commun. Mag 40: pp. 58-66 CrossRef
    3. Benvenuto, N, Tomasin, S (2002) On the comparison between OFDM and single carrier modulation with a DFE using a frequency-domain feedforward filter. IEEE Trans. Commun 50: pp. 947-955 CrossRef
    4. Huang, G, Nix, A, Armour, S (2008) Decision feedback equalization in SC-FDMA. IEEE 19th International Symposium on Personal, Indoor and Mobile Radio Communications. Cannes, 15鈥?8 Sept.
    5. Tomlinson, M (1971) New automatic equaliser employing modulo arithmetic. Electron. Lett 7: pp. 138-139 CrossRef
    6. Harashima, H, Miyakawa, H (1972) Matched-transmission technique for channels with intersymbol interference. IEEE Trans. Comm 20: pp. 774-780 CrossRef
    7. Zhu, Y, Letaief, K (2008) Frequency domain pre-equalization with transmit precoding for MIMO broadcast wireless channels. IEEE J. Sel. Area. Comm 26: pp. 389-400 CrossRef
    8. Noune, M, Nix, A (2009) Frequency-domain precoding for single carrier frequency-division multiple access. IEEE Comm. Mag 47: pp. 68-74 CrossRef
    9. Picinbono, B (1994) On circularity. IEEE Trans. Signal Process 42: pp. 3473-3482 CrossRef
    10. Picinbono, B, Chevalier, P (1995) Widely linear estimation with complex data. IEEE Trans. Signal Process 43: pp. 2030-2033 CrossRef
    11. Schreier, PJ, Scharf, LL, Mullis, CT (2005) Detection and estimation of improper complex random signals. IEEE Trans. Inform. Theor 51: pp. 306-312 CrossRef
    12. Chevalier, P, Pipon, F (2006) New insights into optimal widely linear array receivers for the demodulation of BPSK, MSK, and GMSK signals corrupted by noncircular interferences - application to SAIC. IEEE Trans. Signal Process 54: pp. 870-883 CrossRef
    13. Darsena, D, Gelli, G, Verde, F (2008) Universal linear precoding for NBI-proof widely linear equalization in MC systems. EURASIP J. Wireless Commun. Netw 2008: pp. 1-14
    14. Lin, Z, Xiao, P, Vucetic, B, Sellathurai, M (2010) Analysis of receiver algorithms for LTE SC-FDMA based uplink MIMO systems. IEEE Trans. Wireless Comm 9: pp. 60-65 CrossRef
    15. Fischer, RFH (2002) Precoding and Signal Shaping for Digital Transmission. Wiley, New York CrossRef
    16. Wesel, RD, Cioffi, JM (1998) Achievable rates for Tomlinson-Harashima precoding. IEEE Trans. Inform. Theor 53: pp. 824-831 CrossRef
    17. Tajer, A, Nosratinia, A (2010) Diversity order in ISI channels with single-carrier frequency-domain equalizers. IEEE Trans. Wireless Comm 9: pp. 1022-1032 CrossRef
    18. Mirbagheri, A, Plataniotis, KN, Pasupathy, S (2006) An enhanced widely linear CDMA receiver with OQPSK modulation. IEEE Trans. Commun 54: pp. 261-272 CrossRef
    19. Salz, J (1973) Optimum mean-square decision feedback equalization. Bell Syst. Tech. J 52: pp. 1341-1373 CrossRef
    20. Panazio, C, de Paula, A (2011) An uncoded BER comparison between DFE-SCCP and OFDM using a convex analysis framework. IEEE International Symposium on Circuits and Systems - IEEE ISCAS 2011. Rio de Janeiro, 15鈥?8 May
    21. Proakis, JG (2000) Digital Communications. McGraw-Hill, Upper Saddle River
    22. Benvenuto, N, Tomasin, S (2005) Iterative design and detection of a DFE in the frequency domain. IEEE Trans. Commun 53: pp. 1867-1875 CrossRef
    23. Eyuboglu, MV (1988) Detection of coded modulation signals on linear, severely distorted channels using decision-feedback noise prediction with interleaving. IEEE Trans. Commun 36: pp. 401-409 CrossRef
    24. Zhu, Y, Letaief, KB (2004) Single carrier frequency domain equalization with noise prediction for broadband wireless systems. GLOBECOM 5: pp. 3098-3102
    25. Maurer J, Jalden J, Matz G: Multi-threshold TOP鈥攆ull-diversity vector perturbation precoding with finite-rate feedforward. In / Proceedings of the Asilomar Conference on Signals, Systems and Computers. Pacific Grove, 26鈥?9 Oct. 2008); 428鈥?32.
    26. Luzio, M, Dinis, R, Montezuma, P (2012) SC-FDE for offset modulations: an efficient transmission technique for broadband wireless systems. IEEE Trans. Commun 60: pp. 1851-1861 CrossRef
    27. Luzio, M, Dinis, R, Montezuma, P (2013) Pragmatic frequency domain equalization for single carrier with offset modulations. IEEE Trans. Wireless Commun 12: pp. 4496-4505 CrossRef
  • 刊物主题:Signal, Image and Speech Processing;
  • 出版者:Springer International Publishing
  • ISSN:1687-6180
文摘
Single-carrier systems using frequency-domain equalization (SC-FDE) systems were proposed to overcome the low robustness to carrier frequency offset (CFO) and high peak-to-average-power ratio (PAPR) inherent to regular orthogonal frequency-division multiplexing (OFDM) systems. Usually, linear minimum mean square error (MMSE) equalization is used to compensate the channel effect, since maximum likelihood (ML) detection is computationally impractical. However, if the transmitted signal comes from an improper constellation, widely linear processing can be used to take advantage of all the available second-order statistics from this transmitted signal, obtaining this way a performance gain when compared to the strictly linear case. In this paper, a SC-FDE system employing widely linear MMSE equalization is proposed in its regular and decision-feedback (DFE) versions. A SC-FDE system employing widely linear MMSE Tomlinson-Harashima precoding (THP) and equalization is also proposed. With Tomlinson-Harashima precoding, the error propagation problem observed in systems using a decision-feedback equalizer vanishes, because the feedback processing is done at the transmitter. Simulation results show that together with the error performance gain, these systems have lower sensibility to the feedback filter length in systems using decision-feedback equalizers. In Tomlinson-Harashima precoded systems, the performance gain is observed even with channel estimation/channel state information errors.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700