Can the Gulf Stream induce coherent short-term fluctuations in sea level along the US East Coast? A modeling study
详细信息    查看全文
  • 作者:Tal Ezer
  • 关键词:Gulf Stream ; Florida Current ; Sea level ; Climate change ; Numerical model ; Coastal waves
  • 刊名:Ocean Dynamics
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:66
  • 期:2
  • 页码:207-220
  • 全文大小:4,512 KB
  • 参考文献:Aikman F, Mellor GL, Ezer T, Shenin D, Chen P, Breaker L, Rao DB (1996) Toward an operational nowcast/forecast system for the U.S. East Coast, In: Modern approaches to data assimilation in ocean modeling. Malanotte-Rizzoli P (ed). Elsevier Oceanog Ser 61:347-376. doi:10.​1016/​S0422-9894(96)80016-X
    Allen JS (1975) Coastal trapped waves in a stratified ocean. J Phys Oceanogr 5:300–325CrossRef
    Atkinson LP (1977) Modes of Gulf Stream intrusion into the South Atlantic Bight shelf waters. Geophys Res Lett 4(12):583–586CrossRef
    Bane JM, Brown OB, Evans RH, Hamilton P (1988) Gulf Stream remote forcing of shelfbreak currents in the Mid-Atlantic Bight. Geophys Res Lett 15(5):405–407CrossRef
    Baringer MO, Larsen JC (2001) Sixteen years of Florida current transport at 27N. Geophys Res Lett 28(16):3,179–3,182CrossRef
    Bentamy A, Fillon DC (2012) Gridded surface wind fields from Metop/ASCAT measurements. Int J Remote Sens 33(6):1729–1754CrossRef
    Blaha JP (1984) Fluctuations of monthly sea level as related to the intensity of the Gulf Stream from Key West to Norfolk. J Geophys Res Oceans 89(C5):8033–8042CrossRef
    Boon JD (2012) Evidence of sea level acceleration at U.S. and Canadian tide stations, Atlantic coast, North America. J Coast Res 28(6):1437–1445. doi:10.​2112/​JCOASTRES-D-12-00102.​1 CrossRef
    Boon JD, Mitchell M (2015) Nonlinear change in sea level observed at North American tide stations. J Coast Res. 31(6):1295–1305. doi:10.​2112/​JCOASTRES-D-15-00041.​1
    Bryden HL, Longworth HR, Cunningham SA (2005) Slowing of the Atlantic meridional overturning circulation at 25°N. Nature 438. doi:10.​1038/​nature04385
    Csanady GT (1982) Circulation in the coastal ocean. Reidel, Dordrecht, 279 ppCrossRef
    Ezer T (1999) Decadal variabilities of the upper layers of the subtropical North Atlantic: an ocean model study. J Phys Oceanogr 29(12):3111–3124. doi:10.​1175/​1520-0485(1999)029 CrossRef
    Ezer T (2001) Can long-term variability in the Gulf Stream transport be inferred from sea level? Geophys Res Lett 28(6):1031–1034. doi:10.​1029/​2000GL011640 CrossRef
    Ezer T (2006) Topographic influence on overflow dynamics: idealized numerical simulations and the Faroe Bank Channel overflow. J Geophys Res 111(C02002). doi:10.​1029/​2005JC003195
    Ezer T (2013) Sea level rise, spatially uneven and temporally unsteady: why the U.S. East Coast, the global tide gauge record, and the global altimeter data show different trends. Geophys Res Lett 40:5439–5444. doi:10.​1002/​2013GL057952 CrossRef
    Ezer T (2015) Detecting changes in the transport of the Gulf Stream and the Atlantic overturning circulation from coastal sea level data: the extreme decline in 2009-2010 and estimated variations for 1935-2012. Glob Planet Chang 129:23–36. doi:10.​1016/​j.​gloplacha.​2015.​03.​002 CrossRef
    Ezer T, Atkinson LP (2014) Accelerated flooding along the U.S. East Coast: on the impact of sea-level rise, tides, storms, the Gulf Stream, and the North Atlantic Oscillations. Earth’s Future 2(8):362–382. doi:10.​1002/​2014EF000252 CrossRef
    Ezer T, Corlett WB (2012) Is sea level rise accelerating in the Chesapeake Bay? A demonstration of a novel new approach for analyzing sea level data. Geophys Res Lett 39(L19605). doi:10.​1029/​2012GL053435
    Ezer T, Mellor GL (1992) A numerical study of the variability and the separation of the Gulf Stream, induced by surface atmospheric forcing and lateral boundary flows. J Phys Oceanogr 22:660–682CrossRef
    Ezer T, Mellor GL (1994) Diagnostic and prognostic calculations of the North Atlantic circulation and sea level using a sigma coordinate ocean model. J Geophys Res 99(C7):14,159–14,171. doi:10.​1029/​94JC00859 CrossRef
    Ezer T, Mellor GL, Greatbatch RJ (1995) On the interpentadal variability of the North Atlantic Ocean: model simulated changes in transport, meridional heat flux and coastal sea level between 1955-1959 and 1970-1974. J Geophys Res 100(C6):10,559–10,566. doi:10.​1029/​95JC00659 CrossRef
    Ezer T, Atkinson LP, Corlett WB, Blanco JL (2013) Gulf Stream’s induced sea level rise and variability along the U.S. mid-Atlantic coast. J Geophys Res 118:685–697. doi:10.​1002/​jgrc.​20091 CrossRef
    Ferry N, Parent L, Garric G, Barnier B, Molines J-M, Guinehut S, Mulet S, Haines K, Valdivieso M, Masina S, Storto A (2012) MYOCEAN eddy-permitting global ocean reanalysis products: description and results. Proc. 20 Years of Progress in Radar Altimetry Symposium 24–29 September, Venice, Italy
    Goddard PB, Yin J, Griffies SM, Zhang S (2015) An extreme event of sea-level rise along the Northeast coast of North America in 2009–2010. Nature Comm 6. doi:10.​1038/​ncomms7346
    Hakkinen S, Rhines PB (2004) Decline of subpolar North Atlantic circulation during the 1990s. Science 304:555–559. doi:10.​1126/​science.​1094917 CrossRef
    Higginson S, Thompson KR, Woodworth PL, Hughes CW (2015) The tilt of mean sea level along the east coast of North America. Geophys Res Lett 42(5):1471–1479. doi:10.​1002/​2015GL063186 CrossRef
    Hogg NG (1992) On the transport of the Gulf Stream between cape Hatteras and the grand banks. Deep-Sea Res 39(7–8):1231–1246. doi:10.​1016/​0198-0149(92)90066-3 CrossRef
    Hughes CW, Meredith PM (2006) Coherent sea-level fluctuations along the global continental slope. Philos Trans R Soc 364:885–901. doi:10.​1098/​rsta.​2006.​1744 CrossRef
    Huthnance JM (1978) On coastal trapped waves: analysis and numerical calculation by inverse iteration. J Phys Oceanogr 8:74–92CrossRef
    Huthnance JM (2004) Ocean-to-shelf signal transmission: a parameter study. J Geophys Res 109(C12029). doi:10.​1029/​2004JC002358
    Joyce TM, Zhang R (2010) On the path of the Gulf Stream and the Atlantic meridional overturning circulation. J Clim 23:3146–3154. doi:10.​1175/​2010JCLI3310.​1 CrossRef
    Joyce TM, Deser C, Spall MA (2000) The relation between decadal variability of subtropical mode water and the North Atlantic oscillation. J Clim 13:2550–2569. doi:10.​1175/​1520-0442(2000)013 CrossRef
    Kopp RE (2013) Does the mid-Atlantic United States sea-level acceleration hot spot reflect ocean dynamic variability? Geophys Res Lett 40(15):3981–3985. doi:10.​1002/​grl.​50781 CrossRef
    Levermann A, Griesel A, Hofmann M, Montoya M, Rahmstorf S (2005) Dynamic sea level changes following changes in the thermohaline circulation. Clim Dyn 24(4):347–354CrossRef
    McCarthy G, Frejka-Williams E, Johns WE, Baringer MO, Meinen CS, Bryden HL, Rayner D, Duchez A, Roberts C, Cunningham SA (2012) Observed interannual variability of the Atlantic meridional overturning circulation at 26.5°N. Geophys Res Lett 39(19). doi:10.​1029/​2012GL052933
    Mellor GL, Ezer T (1991) A Gulf Stream model and an altimetry assimilation scheme. J Geophys Res 96:8779–8795. doi:10.​1029/​91JC00383 CrossRef
    Mellor GL, Mechoso CR, Keto E (1982) A diagnostic calculation of the general circulation of the Atlantic Ocean. Deep Sea Res 29(10):1171–1192CrossRef
    Mellor GL, Hakkinen S, Ezer T, Patchen R (2002) A generalization of a sigma coordinate ocean model and an intercomparison of model vertical grids. In: Ocean forecasting: conceptual basis and applications. Pinardi N, Woods ED (Eds). Springer 55-72. doi:10.​1007/​978-3-662-22648-3_​4
    Montgomery R (1938) Fluctuations in monthly sea level on eastern U.S. Coast as related to dynamics of western North Atlantic Ocean. J Mar Res 1:165–185CrossRef
    Piecuch CG, Ponte RM (2015) Inverted barometer contributions to recent sea level changes along the northeast coast of North America. Geophys Res Lett 42(14). doi:10.​1002/​2015GL064580
    Rossby T, Flagg C, Donohue K (2010) On the variability of Gulf Stream transport from seasonal to decadal timescales. J Mar Res 68:503–522CrossRef
    Rossby T, Flagg CN, Donohue K, Sanchez-Franks A, Lillibridge J (2014) On the long-term stability of Gulf Stream transport based on 20 years of direct measurements. Geophys Res Lett 41:114–120. doi:10.​1002/​2013GL058636 CrossRef
    Sallenger AH, Doran KS, Howd P (2012) Hotspot of accelerated sea-level rise on the Atlantic coast of North America. Nat Clim Chang 2:884–888. doi:10.​1038/​NCILMATE1597 CrossRef
    Smeed DA, McCarthy G, Cunningham SA, Frajka-Williams E, Rayner D, Johns WE, Meinen CS, Baringer MO, Moat BI, Duchez A, Bryden HL (2013) Observed decline of the Atlantic meridional overturning circulation 2004 to 2012. Ocean Sci Discuss 10:1619–1645. doi:10.​5194/​osd-10-1619-2013 CrossRef
    Srokosz MA, Bryden HL (2015) Observing the Atlantic meridional overturning circulation yields a decade of inevitable surprises. Science 348(6241):1255575. doi:10.​1126/​science.​1255575 CrossRef
    Sturges W (1974) Sea level slope along continental boundaries. J Geophys Res 79(6):825–830CrossRef
    Sturges WB, Hong G (2001) Gulf Stream transport variability at periods of decades. J Phys Oceanogr 31:1304–1312CrossRef
    Sweet W, Park J (2014) From the extreme to the mean: acceleration and tipping points of coastal inundation from sea level rise. Earth’s Future 2(12):579–600CrossRef
    Sweet W, Zervas C, Gill S (2009) Elevated east coast sea level anomaly: June-July 2009. NOAA Tech Rep No NOS CO-OPS 051, 40 pp., NOAA Natl. Ocean Service, Silver Spring, Md
    Theuerkauf EJ, Rodriguez AB, Fegley SR, Luettich RA (2014) Sea level anomalies exacerbate beach erosion. Geophys Res Lett 41(14):5139–5147. doi:10.​1002/​2014GL060544 CrossRef
    Thompson PR, Mitchum GT (2014) Coherent sea level variability on the North Atlantic western boundary. J Geophys Res Oceans 119:5676–5689. doi:10.​1002/​2014JC009999 CrossRef
    Wang D-P, Mooers CNK (1976) Coastal-trapped waves in a continuously stratified ocean. J Phys Oceanogr 6:853–863. doi:10.​1175/​1520-0485(1976)006<0853:​CTWIAC>2.​0.​CO;2 CrossRef
    Woodworth PL, Maqueda M, Roussenov MÁ, Williams VM, Hughes RG (2014) Mean sea level variability along the northeast American Atlantic coast, and the roles of the wind and the overturning circulation. J Geophys Res Oceans 119(12):8916–8935. doi:10.​1002/​2014JC010520 CrossRef
    Xu F-H, Oey L-Y (2011) The origin of along-shelf pressure gradient in the Middle Atlantic Bight. J Phys Oceanogr 41(9):1720–1740. doi:10.​1175/​2011JPO4589 CrossRef
    Yin J, Goddard PB (2013) Oceanic control of sea level rise patterns along the East Coast of the United States. Geophys Res Lett 40:5514–5520. doi:10.​1002/​2013GL057992 CrossRef
    Zhao J, Johns W (2014) Wind-forced interannual variability of the Atlantic meridional overturning circulation at 26.5°N. J Geophys Res Oceans 119:6253–6273. doi:10.​1002/​2013JC009407
  • 作者单位:Tal Ezer (1)

    1. Center for Coastal Physical Oceanography, Old Dominion University, 4111 Monarch Way, Norfolk, VA, 23508, USA
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Oceanography
    Geophysics and Geodesy
    Meteorology and Climatology
    Fluids
    Structural Foundations and Hydraulic Engineering
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1616-7228
文摘
Much attention has been given in recent years to observations and models that show that variations in the transport of the Atlantic Meridional Overturning Circulation (AMOC) and in the Gulf Stream (GS) can contribute to interannual, decadal, and multi-decadal variations in coastal sea level (CSL) along the US East Coast. However, less is known about the impact of short-term (time scales of days to weeks) fluctuations in the GS and their impact on CSL anomalies. Some observations suggest that these anomalies can cause unpredictable minor tidal flooding in low-lying areas when the GS suddenly weakens. Can these short-term CSL variations be attributed to changes in the transport of the GS? An idealized numerical model of the GS has been set up to test this proposition. The regional model uses a 1/12° grid with a simplified coastline to eliminate impacts from estuaries and small-scale coastal features and thus isolate the GS impact. The GS in the model is driven by inflows/outflows, representing the Florida Current (FC), the Slope Current (SC), and the Sargasso Sea (SS) flows. Forcing the model with an oscillatory FC transport with a period of 2, 5, and 10 days produced coherent CSL variations from Florida to the Gulf of Maine with similar periods. However, when imposing variations in the transports of the SC or the SS, they induce CSL variations only north of Cape Hatteras. The suggested mechanism is that variations in GS transport produce variations in sea level gradient across the entire GS length and this large-scale signal is then transmitted into the shelf by the generation of coastal-trapped waves (CTW). In this idealized model, the CSL variations induced by variations of ∼10 Sv in the transport of the GS are found to resemble CSL variations induced by ∼5 m s−1 zonal wind fluctuations, though the mechanisms of wind-driven and GS-driven sea level are quite different. Better understanding of the relation between variations in offshore currents and CSL will help to improve the prediction of both short-term water level anomalies that cause flooding, as well as spatial variations in long-term sea level variability and coastal sea level rise. Keywords Gulf Stream Florida Current Sea level Climate change Numerical model Coastal waves

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700