Influence of hydrological, biogeochemical and temperature transients on subsurface carbon fluxes in a flood plain environment
详细信息    查看全文
  • 作者:Bhavna Arora ; Nicolas F. Spycher ; Carl I. Steefel ; Sergi Molins…
  • 关键词:Flood plain ; Reduced zones ; Subsurface carbon dynamics ; Temporal variability ; Biogeochemical processes
  • 刊名:Biogeochemistry
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:127
  • 期:2-3
  • 页码:367-396
  • 全文大小:3,208 KB
  • 参考文献:Ahonen L, Tuovinen OH (1990) Kinetics of sulfur oxidation at suboptimal temperatures. Appl Environ Microbiol 56:560–562
    Amos RT, Mayer KU, Blowes DW, Ptacek CJ (2004) Reactive transport modeling of column experiments for the remediation of acid mine drainage. Environ Sci Technol 38:3131–3138. doi:10.​1021/​es0349608 CrossRef
    Anderson RT, Vrionis HA, Ortiz-Bernad I et al (2003) Stimulating the in situ activity of Geobacter species to remove uranium from the groundwater of a uranium-contaminated aquifer. Appl Environ Microbiol 69:5884–5891CrossRef
    Andrews DM, Lin H, Zhu Q et al (2011) Hot spots and hot moments of dissolved organic carbon export and soil organic carbon storage in the Shale Hills Catchment. Vadose Zo J 10:943. doi:10.​2136/​vzj2010.​0149 CrossRef
    Arndt S, Jørgensen BB, LaRowe DE et al (2013) Quantifying the degradation of organic matter in marine sediments: a review and synthesis. Earth-Sci Rev 123:53–86. doi:10.​1016/​j.​earscirev.​2013.​02.​008 CrossRef
    Arora B, Mohanty BP, McGuire JT, Cozzarelli IM (2013) Temporal dynamics of biogeochemical processes at the Norman Landfill site. Water Resour Res 49:6909–6926. doi:10.​1002/​wrcr.​20484 CrossRef
    Arora B, Dwivedi D, Hubbard SS et al (2015a) Identifying geochemical hot moments and their controls on a contaminated river floodplain system using wavelet and entropy approaches. Environ Model Softw (in press)
    Arora B, Şengör SS, Steefel CI (2015b) A reactive transport benchmark on heavy metal cycling in lake sediments. Comput Geosci 19:613–633. doi:10.​1007/​s10596-014-9445-8 CrossRef
    Atkins ML, Santos IR, Ruiz-Halpern S, Maher DT (2013) Carbon dioxide dynamics driven by groundwater discharge in a coastal floodplain creek. J Hydrol 493:30–42. doi:10.​1016/​j.​jhydrol.​2013.​04.​008 CrossRef
    Aufdenkampe AK, Mayorga E, Raymond PA et al (2011) Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere. Front Ecol Environ 9:53–60. doi:10.​1890/​100014 CrossRef
    Bao C, Wu H, Li L et al (2014) Uranium bioreduction rates across scales: biogeochemical “hot moments” and “hot spots” during a biostimulation Experiment at Rifle, Colorado. Environ Sci Technol. doi: 10.​1021/​es501060d
    Bargar JR, Campbell KM, Stubbs JE, et al (2011) Speciation and dynamics of biologically reduced uranium(IV) in the Old Rifle aquifer. Abstr Pap Am Chem Soc 242
    Batson J, Noe GB, Hupp CR et al (2015) Soil greenhouse gas emissions and carbon budgeting in a short-hydroperiod floodplain wetland. J Geophys Res Biogeosci 120:77–95. doi:10.​1002/​2014JG002817.​Received CrossRef
    Billings SA, Richter DD, Yarie J (1998) Soil carbon dioxide fluxes and profile concentrations in two boreal forests. Can J For Res Can Rech For 28:1773–1783. doi:10.​1139/​cjfr-28-12-1773 CrossRef
    Blazejewski GA, Stolt MH, Gold AJ et al (2009) Spatial distribution of carbon in the subsurface of riparian zones. Soil Sci Soc Am J 73:1733. doi:10.​2136/​sssaj2007.​0386 CrossRef
    Bosatta E, Ågren GI (1995) The power and reactive continuum models as particular cases of the q-theory of organic matter dynamics. Geochim Cosmochim Acta 59:3833–3835CrossRef
    Bourg ACM, Bertin C (1993) Biogeochemical processes during the infiltration of river water into an alluvial aquifer. Environ Sci Technol 27:661–666. doi:10.​1021/​es00041a009 CrossRef
    Brunke M, Gonser T (1997) The ecological significance of exchange processes between rivers and groundwater. Freshw Biol 37:1–33. doi:10.​1046/​j.​1365-2427.​1997.​00143.​x CrossRef
    Campbell KM, Kukkadapu RK, Qafoku NP et al (2012) Geochemical, mineralogical and microbiological characteristics of sediment from a naturally reduced zone in a uranium-contaminated aquifer. Appl Geochem 27:1499–1511. doi:10.​1016/​j.​apgeochem.​2012.​04.​013 CrossRef
    Cole JJ, Caraco NF (2001) Carbon in catchments : connecting terrestrial carbon losses with aquatic metabolism. Mar Freshw Res 52:101–110CrossRef
    Cole JJ, Prairie YT, Caraco NF et al (2007) Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10:172–185. doi:10.​1007/​s10021-006-9013-8 CrossRef
    Crow SE, Wieder RK (2005) Sources of CO2 emission from a northern peatland: root respiration, exudation, and decomposition. Ecology 86:1825–1834. doi:10.​1890/​04-1575 CrossRef
    Dai Z, Trettin CC, Li C et al (2012) Effect of assessment scale on spatial and temporal variations in CH4, CO2, and N2O fluxes in a forested wetland. Water Air Soil Pollut 223:253–265. doi:10.​1007/​s11270-011-0855-0 CrossRef
    Davidson EA, Samanta S, Caramori SS, Savage K (2012) The dual arrhenius and michaelis-menten kinetics model for decomposition of soil organic matter at hourly to seasonal time scales. Glob Chang Biol 18:371–384. doi:10.​1111/​j.​1365-2486.​2011.​02546.​x CrossRef
    Dermody O, Weltzin JF, Engel EC et al (2007) How do elevated [CO2], warming, and reduced precipitation interact to affect soil moisture and LAI in an old field ecosystem? Plant Soil 301:255–266. doi:10.​1007/​s11104-007-9443-x CrossRef
    Dick JJ, Tetzlaff D, Birkel C, Soulsby C (2014) Modelling landscape controls on dissolved organic carbon sources and fluxes to streams. Biogeochemistry 122:361–374. doi:10.​1007/​s10533-014-0046-3 CrossRef
    Doussan C, Poitevin G, Ledoux E, Delay M (1997) River bank filtration: modelling of the changes in water chemistry with emphasis on nitrogen species. J Contam Hydrol 25:129–156. doi:10.​1016/​S0169-7722(96)00024-1 CrossRef
    Druhan JL, Bill M, Lim H et al (2014a) A large column analog experiment of stable isotope variations during reactive transport: II. Carbon mass balance, microbial community structure and predation. Geochim Cosmochim Acta 124:394–409. doi:10.​1016/​j.​gca.​2013.​08.​036 CrossRef
    Druhan JL, Steefel CI, Conrad ME, DePaolo DJ (2014b) A large column analog experiment of stable isotope variations during reactive transport: i. A comprehensive model of sulfur cycling and δ34S fractionation. Geochim Cosmochim Acta 124:366–393. doi:10.​1016/​j.​gca.​2013.​08.​037 CrossRef
    Duckworth OW, Martin ST (2004) Role of molecular oxygen in the dissolution of siderite and rhodochrosite. Geochim Cosmochim Acta 68:607–621. doi:10.​1016/​S0016-7037(00)00464-2 CrossRef
    Eliasson PE, McMurtrie RE, Pepper DA et al (2005) The response of heterotrophic CO2 flux to soil warming. Glob Chang Biol 11:167–181. doi:10.​1111/​j.​1365-2486.​2004.​00878.​x CrossRef
    Etiope G (1999) Subsoil CO 2 and CH 4 and their advective transfer from faulted grassland to the atmosphere. J Geophys Res 104:16889. doi:10.​1029/​1999JD900299 CrossRef
    Fan Z, Neff JC, Waldrop MP et al (2014) Transport of oxygen in soil pore-water systems: implications for modeling emissions of carbon dioxide and methane from peatlands. Biogeochemistry 121:455–470. doi:10.​1007/​s10533-014-0012-0 CrossRef
    Fang Y, Yabusaki SB, Morrison SJ et al (2009) Multicomponent reactive transport modeling of uranium bioremediation field experiments. Geochim Cosmochim Acta 73:6029–6051. doi:10.​1016/​j.​gca.​2009.​07.​019 CrossRef
    Farouki OT (1982) Thermal properties of soils. Hanover, New Hampshire
    Flores Orozco A, Williams KH, Long PE et al (2011) Using complex resistivity imaging to infer biogeochemical processes associated with bioremediation of an uranium-contaminated aquifer. J Geophys Res 116:G03001. doi:10.​1029/​2010JG001591
    Fox PM, Davis JA, Hay MB et al (2012) Rate-limited U(VI) desorption during a small-scale tracer test in a heterogeneous uranium-contaminated aquifer. Water Resour Res 48:n/a–n/a. doi: 10.​1029/​2011WR011472
    Frey SD, Drijber R, Smith H, Melillo J (2008) Microbial biomass, functional capacity, and community structure after 12 years of soil warming. Soil Biol Biochem 40:2904–2907. doi:10.​1016/​j.​soilbio.​2008.​07.​020 CrossRef
    Gandy CJ, Smith JWN, Jarvis AP (2007) Attenuation of mining-derived pollutants in the hyporheic zone: a review. Sci Total Environ 373:435–446. doi:10.​1016/​j.​scitotenv.​2006.​11.​004 CrossRef
    Handley KM, VerBerkmoes NC, Steefel CI et al (2013) Biostimulation induces syntrophic interactions that impact C, S and N cycling in a sediment microbial community. ISME J 7:800–816. doi:10.​1038/​ismej.​2012.​148 CrossRef
    Hanson PJ, Edwards NT, Garten CT, Andrews JA (2000) Separating root and soil microbial contributions to soil respiration: a review of methods and observations. Biogeochemistry 48:115–146. doi:10.​1023/​A:​1006244819642 CrossRef
    Harshman EN (1972) Geology and uranium deposits, Shirley Basin area. Wyoming, Washington
    Helgeson HC, Delany JM, Nesbitt HW, Bird DK (1978) Summary and critique of the thermodynamic properties of rock-forming minerals. Am J Sci 278:229
    Helz GR, Adelson JM (2013) Trace element profiles in sediments as proxies of dead zone history; rhenium compared to molybdenum. Environ Sci Technol 47:1257–1264. doi:10.​1021/​es303138d CrossRef
    Hinton MJ, Schiff SL, English MC (1997) The significance of storms for the concentration and export of dissolved organic carbon from two Precambrian Shield catchments. Biogeochemistry 36:67–88. doi:10.​1023/​A:​1005779711821 CrossRef
    Hiscock KM, Grischek T (2002) Attenuation of groundwater pollution by bank filtration. J Hydrol 266:139–144. doi:10.​1016/​S0022-1694(02)00158-0 CrossRef
    Hope D, Billett MF, Cresser MS (1994) A review of the export of carbon in river water: fluxes and processes. Environ Pollut 84:301–324. doi:10.​1016/​0269-7491(94)90142-2 CrossRef
    Hunter KS, Wang Y, Van Cappellen P (1998) Kinetic modeling of microbially-driven redox chemistry of subsurface environments: coupling transport, microbial metabolism and geochemistry. J Hydrol 209:53–80. doi:10.​1016/​S0022-1694(98)00157-7 CrossRef
    Jansen B, Kalbitz K, McDowell WH (2014) Dissolved organic matter: linking soils and aquatic systems. Vadose Zo J. doi:10.​2136/​vzj2014.​05.​0051
    Kalbitz K, Solinger S, Park JH et al (2000) Controls on the dynamics of dissolved organic matter in soils: a review. Soil Sci 165:277–304. doi:10.​1097/​00010694-200004000-00001 CrossRef
    Kang S, Running SW, Kimball JS et al (2014) Effects of spatial and temporal climatic variability on terrestrial carbon and water fluxes in the Pacific Northwest, USA. Environ Model Softw 51:228–239. doi:10.​1016/​j.​envsoft.​2013.​09.​020 CrossRef
    Keller CK, Bacon DH (1998) Soil respiration and georespiration distinguished by transport analyses of vadose CO2, 13CO2, and 14CO2. Global Biogeochem Cycles 12:361–372CrossRef
    Kim JH, Guo X, Park HS (2008) Comparison study of the effects of temperature and free ammonia concentration on nitrification and nitrite accumulation. Process Biochem 43:154–160. doi:10.​1016/​j.​procbio.​2007.​11.​005 CrossRef
    Kim DG, Vargas R, Bond-Lamberty B, Turetsky MR (2012) Effects of soil rewetting and thawing on soil gas fluxes: a review of current literature and suggestions for future research. Biogeosciences 9:2459–2483. doi:10.​5194/​bg-9-2459-2012 CrossRef
    Kukkadapu RK, Qafoku NP, Arey BW et al (2010) Effect of extent of natural subsurface bioreduction on Fe-mineralogy of subsurface sediments. J Phys 217:012047. doi:10.​1088/​1742-6596/​217/​1/​012047
    Lasaga AC (1998) Kinetic theory in the earth sciences. Princeton University Press, PrincetonCrossRef
    Leirós M, Trasar-Cepeda C, Seoane S, Gil-Sotres F (1999) Dependence of mineralization of soil organic matter on temperature and moisture. Soil Biol Biochem 31:327–335. doi:10.​1016/​S0038-0717(98)00129-1 CrossRef
    Li L, Steefel CI, Williams KH et al (2009) Mineral transformation and biomass accumulation associated with uranium bioremediation at Rifle, Colorado. Environ Sci Technol 43:5429–5435. doi:10.​1021/​es900016v CrossRef
    Li L, Steefel CI, Kowalsky MB et al (2010) Effects of physical and geochemical heterogeneities on mineral transformation and biomass accumulation during biostimulation experiments at Rifle, Colorado. J Contam Hydrol 112:45–63. doi:10.​1016/​j.​jconhyd.​2009.​10.​006 CrossRef
    Long P (2009) Rifle integrated field research challenge site, quarterly report, fiscal year 2009, 2nd and 3rd Quarters
    Long PE, Williams KH, Davis JA et al (2015) Bicarbonate impact on U(VI) bioreduction in a shallow alluvial aquifer. Geochim Cosmochim Acta 150:106–124. doi:10.​1016/​j.​gca.​2014.​11.​013 CrossRef
    Lovley DR, Phillips EJP (1986) Organic matter mineralization with reduction of ferric iron in anaerobic sediments. Appl Environ Microbiol 51:683–689
    Luther GW, Findlay AJ, MacDonald DJ et al (2011) Thermodynamics and kinetics of sulfide oxidation by oxygen: a look at inorganically controlled reactions and biologically mediated processes in the environment. Front Microbiol 2:1–9. doi:10.​3389/​fmicb.​2011.​00062 CrossRef
    Lynch S, Batty L, Byrne P (2014) Environmental risk of metal mining contaminated river bank sediment at redox-transitional zones. Minerals 4:52–73. doi:10.​3390/​min4010052 CrossRef
    Macpherson GL (2009) CO2 distribution in groundwater and the impact of groundwater extraction on the global C cycle. Chem Geol 264:328–336. doi:10.​1016/​j.​chemgeo.​2009.​03.​018 CrossRef
    Maggi F, Gu C, Riley WJ et al (2008) A mechanistic treatment of the dominant soil nitrogen cycling processes: model development, testing, and application. J Geophys Res Biogeosci 113:1–13. doi:10.​1029/​2007JG000578 CrossRef
    Majzlan J, Navrotsky A, Schwertmann U (2004) Thermodynamics of iron oxides: part III, Enthalpies of formation and stability of ferrihydrite (~ Fe(OH)3/4(S04)1/8), and ε-Fe2O3. Geochmica Cosmochim Acta 68:1049–1059CrossRef
    Mayer KU, Frind EO, Blowes DW (2002) Multicomponent reactive transport modeling in variably saturated porous media using a generalized formulation for kinetically controlled reactions. Water Resour Res 38:13–1–13–21. doi: 10.​1029/​2001WR000862
    McClain ME, Boyer EW, Dent CL et al (2003) Biogeochemical hot spots and hot moments at the interface of terrestrial and aquatic ecosystems. Ecosystems 6:301–312CrossRef
    McKenney DJ, Johnson GP, Findlay WI (1984) Effect of temperature on consecutive denitrification reactions in brookston clay and fox sandy loam. Appl Environ Microbiol 47:919–926
    Miall AD (2001) Sedimentary basins: evolution, facies, and sediment budget. Sediment Geol 143:185–186CrossRef
    Millington RJ, Quirk JP (1961) Permeability of porous solids. Trans Faraday Soc 57:1200–1207CrossRef
    Morel FMM, Hering JG (1993) Principles and applications of aquatic chemistry. Wiley, New York
    Oba Y, Poulson SR (2009) Oxygen isotope fractionation of dissolved oxygen during abiological reduction by aqueous sulfide. Chem Geol 268:226–232. doi:10.​1016/​j.​chemgeo.​2009.​09.​002 CrossRef
    Palandri JL, Kharaka YK (2004) A compilation of rate parameters of water-mineral interaction kinetics for application to geochemical modeling. U.S. geological survey open file report 2004–1068, Menlo Park
    Palmer K, Drake HL, Horn MA (2010) Association of novel and highly diverse acid-tolerant denitrifiers with N2O fluxes of an acidic fen. Appl Environ Microbiol 76:1125–1134. doi:10.​1128/​AEM.​02256-09 CrossRef
    Parkhurst DL, Appelo CAJ (1999) User’s guide to PHREEQC (version 2)—a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. Denver, CO
    Parton WJ, Schimel DS, Cole CV, Ojima DS (1987) Analysis of factors controlling soil organic matter levels in Great Plains grasslands. Soil Sci Soc Am J 51:1173–1179. doi:10.​2136/​sssaj1987.​0361599500510005​0015x CrossRef
    Pruess K, Oldenburg CM, Moridis GJ (1999) TOUGH2 user’s guide version 2. Lawrence Berkeley National Laboratory, BerkeleyCrossRef
    Pulliam WM (1992) Carbon dioxide and methane exportsfrom a southeastern floodplain swamp. Ecol Monogr 63:29–53CrossRef
    Qafoku NP, Kukkadapu RK, McKinley JP et al (2009) Uranium in framboidal pyrite from a naturally bioreduced alluvial sediment. Environ Sci Technol 43:8528–8534. doi:10.​1021/​es9017333 CrossRef
    Qafoku NP, Gartman BN, Kukkadapu RK et al (2014) Geochemical and mineralogical investigation of uranium in multi-element contaminated, organic-rich subsurface sediment. Appl Geochemistry 42:77–85. doi:10.​1016/​j.​apgeochem.​2013.​12.​001 CrossRef
    Raich JW, Potter CS (1995) Global patterns of carbon-dioxide emissions from soils. Global Biogeochem Cycles 9:23–36. doi:10.​1029/​94gb02723 CrossRef
    Raymond PA, Bauer JE, Cole JJ (2000) Atmospheric CO2 evasion, dissolved inorganic carbon production, and net heterotrophy in the York River estuary. Limnol Oceanogr 45:1707–1717. doi:10.​4319/​lo.​2000.​45.​8.​1707 CrossRef
    Reed MH, Palandri JL (2006) SOLTHERM.H06, a database of equilibrium constants for minerals and aqueous species. University of Oregon, Eugene
    Richards LA (1931) Capillary conduction of liquids through porous mediums. Physics (College Park Md) 1:318. doi:10.​1063/​1.​1745010
    Richey JE, Melack JM, Aufdenkampe AK et al (2002) Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2. Nature 416:617–620. doi:10.​1038/​416617a CrossRef
    Rickard D (2006) The solubility of FeS. Geochim Cosmochim Acta 70:5779–5789. doi:10.​1016/​j.​gca.​2006.​02.​029 CrossRef
    Riley WJ, Maggi F, Kleber M et al (2014) Long residence times of rapidly decomposable soil organic matter: application of a multi-phase, multi-component, and vertically resolved model (BAMS1) to soil carbon dynamics. Geosci Model Dev 7:1335–1355. doi:10.​5194/​gmd-7-1335-2014 CrossRef
    Robertson AI, Bunn SE, Boon PI, Walker KF (1999) Sources, sinks and transformations of organic carbon in Australian floodplain rivers. Mar Freshw Res 50:813. doi:10.​1071/​MF99112 CrossRef
    Russell EW (1973) Soil conditions and plant growth, 10th edn. Longmans Publishing, London
    Schlesinger WH, Andrews JA (2000) Soil respiration and the global carbon cycle. Biogeochemistry 48:7–20CrossRef
    Schmidt MWI, Torn MS, Abiven S et al (2011) Persistence of soil organic matter as an ecosystem property. Nature 478:49–56CrossRef
    Shock EL, Koretsky CM (1993) Metal-organic complexes in geochemical processes: calculation of standard partial molal thermodynamic properties of aqueous acetate complexes at high pressures and temperatures. Geochim Cosmochim Acta 57:4899–4922. doi:10.​1016/​0016-7037(93)90128-J CrossRef
    Shock EL, Sassani DC, Willis M, Sverjensky DA (1997) Inorganic species in geologic fluids: correlations among standard molal thermodynamic properties of aqueous ions and hydroxide complexes. Geochim Cosmochim Acta 61:907–950. doi:10.​1016/​S0016-7037(96)00339-0 CrossRef
    Simunek J, Suarez D (1993) Modeling of carbon dioxide transport and production in soil. Water Resour Res 29:487–497CrossRef
    Smith KA, Ball T, Conen F et al (2003) Exchange of greenhouse gases between soil and atmosphere: interactions of soil physical factors and biological processes. Eur J Soil Sci 54:779–791. doi:10.​1046/​j.​1365-2389.​2003.​00567.​x CrossRef
    SNL (2007) Qualification of thermodynamic data for geochemical modeling of mineral-water interactions in dilute systems. Las Vegas, Nevada
    Sonnenthal E, Spycher N, Xu T et al (2014) TOUGHREACT V3.0-OMP reference manual: a parallel simulation program for non-isothermal multiphase geochemical reactive transport. Lawrence Berkeley National Laboratory, Berkeley
    Southwell M, Thoms M (2011) Patterns of nutrient concentrations across multiple floodplain surfaces in a large Dryland River system. Geogr Res 49:431–443. doi:10.​1111/​j.​1745-5871.​2011.​00699.​x CrossRef
    Spirakis CS (1996) The roles of organic matter in the formation of uranium deposits in sedimentary rocks. Ore Geol Rev 11:53–69. doi:10.​1016/​0169-1368(95)00015-1 CrossRef
    Steefel CI (2000) New directions in hydrogeochemical transport modeling: Incorporating multiple kinetic and equilibrium reaction pathways. Comput Methods Water Resour Vols 1 2 Comput Methods Subsurf Flow Transp—Comput Methods, Surf Water Syst Hydrol 331–338
    Steefel CI, Brodie EL, Bouskill N et al (2014) The GEWaSC framework: multiscale modeling of coupled biogeochemical, microbiological, and. Goldschmidt Abstracts. Sacramento, CA, p 2373
    Stielstra CM, Lohse KA, Chorover J et al (2015) Climatic and landscape influences on soil moisture are primary determinants of soil carbon fluxes in seasonally snow-covered forest ecosystems. Biogeochemistry. doi:10.​1007/​s10533-015-0078-3
    Stumm W, Morgan JJ (eds) (1993) Aquatic chemistry: chemical equilibria and rates in natural waters. Wiley, New York
    Suchomel KH, Kreamer DK, Long A (1990) Production and transport of carbon dioxide in a contaminated vadose zone: a stable and radioactive carbon isotope study. Environ Sci Technol 24:1824–1831. doi:10.​1021/​es00082a006 CrossRef
    Thamdrup B, Hansen JW, Jorgensen BB (1998) Temperature dependence of aerobic respiration in a coastal sediment. FEMS Microbiol Ecol 25:189–200. doi:10.​1111/​j.​1574-6941.​1998.​tb00472.​x CrossRef
    Thornton SF, McManus J (1994) Application of organic carbon and nitrogen stable isotope and C/N ratios as source indicators of organic matter provenance in estuarine systems: evidence from the Tay Estuary, Scotland. Estuar Coast Shelf Sci 38:219–233CrossRef
    Tockner K, Pennetzdorfer D, Reiner N et al (1999) Hydrological connectivity, and the exchange of organic matter and nutrients in a dynamic river-floodplain system (Danube, Austria). Freshw Biol 41:521–535. doi:10.​1046/​j.​1365-2427.​1999.​00399.​x CrossRef
    Tokunaga T, Kim Y, Williams KH et al (2015) Vadose zone borehole instrumentation for monitoring water, solute, and gas fluxes: installations in a cobbly floodplain and initial results. Vadose Zo J 8:1–16
    Tufenkji N, Ryan JN, Elimelech M (2002) Peer reviewed: the promise of bank filtration. Environ Sci Technol 36:422A–428A. doi:10.​1021/​es022441j CrossRef
    U.S. Department of Energy (1999) Final Site Observational Work Plan for the UMTRA Project Old Rifle Site. Grand Junction, CO
    U.S. Department of Energy (2012) groundwater compliance action plan for the Old Rifle, Colorado, UMTRCA Title I Processing Site
    Van Breukelen BM, Griffioen J, Röling WFM, Van Verseveld HW (2004) Reactive transport modelling of biogeochemical processes and carbon isotope geochemistry inside a landfill leachate plume. J Contam Hydrol 70:249–269. doi:10.​1016/​j.​jconhyd.​2003.​09.​003 CrossRef
    Van Cappellen P, Gaillard J-F (1996) Biogeochemical dynamics in aquatic sediments. In: Lichtner PC, Steefel CI, Oelkers EH (eds) Reactive transport in porous media, vol 34. Mineralogical Society of America, Washington, pp 335–376
    van Griethuysen C, Luitwieler M, Joziasse J, Koelmans AA (2005) Temporal variation of trace metal geochemistry in floodplain lake sediment subject to dynamic hydrological conditions. Environ Pollut 137:281–294. doi:10.​1016/​j.​envpol.​2005.​01.​023 CrossRef
    Vrionis HA, Anderson RT, Ortiz-Bernad I et al (2005) Microbiological and geochemical heterogeneity in an in situ uranium bioremediation field site. Appl Environ Microbiol 71:6308–6318. doi:10.​1128/​AEM.​71.​10.​6308-6318.​2005 CrossRef
    Wainwright HM, Orozco AF, Bücker M et al (2015) Hierarchical Bayesian method for mapping biogeochemical hot spots using induced polarization imaging. Water Resour Res n/a–n/a. doi:10.​1002/​2015WR017763
    Waldrop M, Balser T, Firestone M (2000) Linking microbial community composition to function in a tropical soil. Soil Biol Biochem 32:1837–1846. doi:10.​1016/​S0038-0717(00)00157-7 CrossRef
    Walvoord MA., Striegl RG, Prudic DE, Stonestrom DA (2005) CO 2 dynamics in the Amargosa Desert: fluxes and isotopic speciation in a deep unsaturated zone. Water Resour Res 41:n/a–n/a. doi: 10.​1029/​2004WR003599
    Wang JH, Baltzis BC, Lewandowski GA (1995) Fundamental denitrification kinetic studies with Pseudomonas denitrificans. Biotechnol Bioeng 47:26–41. doi:10.​1002/​bit.​260470105 CrossRef
    Westerhoff P (2003) Reduction of nitrate, bromate, and chlorate by zero valent iron. J Environ Eng 129:10–16. doi:10.​1061/​(ASCE)0733-9372(2003)129:​1(10) CrossRef
    Widdowson MA, Molz FJ, Benefield LD (1988) A numerical transport model for oxygen- and nitrate-based respiration linked to substrate and nutrient availability in porous media. Water Resour Res 24:1553–1565. doi:10.​1029/​WR024i009p01553 CrossRef
    Wilhelm SW, LeCleir GR, Bullerjahn GS et al (2014) Seasonal changes in microbial community structure and activity imply winter production is linked to summer hypoxia in a large lake. FEMS Microbiol Ecol 87:475–485. doi:10.​1111/​1574-6941.​12238 CrossRef
    Williams KH, Long PE, Davis JA et al (2011) Acetate availability and its influence on sustainable bioremediation of uranium-contaminated groundwater. Geomicrobiol J 28:519–539. doi:10.​1080/​01490451.​2010.​520074 CrossRef
    Williamson MA, Rimstidt JD (1994) The kinetics and electrochemical rate-determining step of aqueous pyrite oxidation. Geochim Cosmochim Acta 58:5443–5454CrossRef
    Wójcicki KJ (2012) Stratigraphy of organic-rich deposits in floodplain environments: examples from the upper Odra River basin. Quaest Geogr 31:107–117
    Wójcicki KJ, Marynowski L (2012) The organic and mineral matter contents in deposits infilling floodplain basins: holocene alluviation record from the Kłodnica and Osobłoga river valleys, southern Poland. Geomorphology 159–160:15–29. doi:10.​1016/​j.​geomorph.​2012.​02.​020 CrossRef
    Wood WW, Petraitis MJ (1984) Origin and distribution of carbon dioxide in the unsaturated zone of the southern high plains of texas. Water Resour Res 20:1193–1208. doi:10.​1029/​WR020i009p01193 CrossRef
    Wu Y, Ajo-Franklin JB, Spycher N et al (2011) Geophysical monitoring and reactive transport modeling of ureolytically-driven calcium carbonate precipitation. Geochem Trans 12:7. doi:10.​1186/​1467-4866-12-7 CrossRef
    Xu T, Spycher N, Sonnenthal E et al (2011) TOUGHREACT Version 2.0: a simulator for subsurface reactive transport under non-isothermal multiphase flow conditions. Comput Geosci 37:763–774. doi:10.​1016/​j.​cageo.​2010.​10.​007 CrossRef
    Yabusaki SB, Fang Y, Williams KH et al (2011) Variably saturated flow and multicomponent biogeochemical reactive transport modeling of a uranium bioremediation field experiment. J Contam Hydrol 126:271–290. doi:10.​1016/​j.​jconhyd.​2011.​09.​002 CrossRef
    Zogg GP, Zak DR, Ringelberg DB et al (1997) Compositional and functional shifts in microbial communities due to soil warming. Soil Sci Soc Am J 61:475. doi:10.​2136/​sssaj1997.​0361599500610002​0015x CrossRef
  • 作者单位:Bhavna Arora (1)
    Nicolas F. Spycher (1)
    Carl I. Steefel (1)
    Sergi Molins (1)
    Markus Bill (1)
    Mark E. Conrad (1)
    Wenming Dong (1)
    Boris Faybishenko (1)
    Tetsu K. Tokunaga (1)
    Jiamin Wan (1)
    Kenneth H. Williams (1)
    Steven B. Yabusaki (2)

    1. Energy Geosciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., MS 74-327R, Berkeley, CA, 94720, USA
    2. Pacific Northwest National Laboratory, Richland, USA
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Geochemistry
    Biochemistry
    Soil Science and Conservation
    Terrestrial Pollution
  • 出版者:Springer Netherlands
  • ISSN:1573-515X
文摘
Flood plains play a potentially important role in the global carbon cycle. The accumulation of organic matter in flood plains often induces the formation of chemically reduced groundwater and sediments along riverbanks. In this study, our objective is to evaluate the cumulative impact of such reduced zones, water table fluctuations, and temperature gradients on subsurface carbon fluxes in a flood plain at Rifle, Colorado located along the Colorado River. 2-D coupled variably-saturated, non-isothermal flow and biogeochemical reactive transport modeling was applied to improve our understanding of the abiotic and microbially mediated reactions controlling carbon dynamics at the Rifle site. Model simulations considering only abiotic reactions (thus ignoring microbial reactions) underestimated CO2 partial pressures observed in the unsaturated zone and severely underestimated inorganic (and overestimated organic) carbon fluxes to the river compared to simulations with biotic pathways. Both model simulations and field observations highlighted the need to include microbial contributions from chemolithoautotrophic processes (e.g., Fe+2 and S−2 oxidation) to match locally-observed high CO2 concentrations above reduced zones. Observed seasonal variations in CO2 concentrations in the unsaturated zone could not be reproduced without incorporating temperature gradients in the simulations. Incorporating temperature fluctuations resulted in an increase in the annual groundwater carbon fluxes to the river by 170 % to 3.3 g m−2 d−1, while including water table variations resulted in an overall decrease in the simulated fluxes. We conclude that spatial microbial and redox zonation as well as temporal fluctuations of temperature and water table depth contribute significantly to subsurface carbon fluxes in flood plains and need to be represented appropriately in model simulations.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700