Improvement of Glass Transition and Flowability of Reduced-Fat Coffee Creamer: Effect of Fat Replacer and Fluidized Bed Drying
详细信息    查看全文
  • 作者:Simin Hedayatnia ; Hamed Mirhosseini ; Sahar Tamnak…
  • 关键词:Reduced ; fat coffee creamer ; Glass transition temperature (Tg) ; Drum drying ; Fluidized bed drying ; Maltodextrin ; Inulin
  • 刊名:Food and Bioprocess Technology
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:9
  • 期:4
  • 页码:686-698
  • 全文大小:1,764 KB
  • 参考文献:Abiad, M. G., Gonzalez, D. C., Mert, B., Campanella, O. H., & Carvajal, M. T. (2010). A novel method to measure the glass and melting transitions of pharmaceutical powders. International Journal of Pharmaceutics, 396(1), 23–29.CrossRef
    Adhikari, B., Howes, T., Bhandari, B. R., & Truong, V. (2003). Characterization of the surface stickiness of fructose–maltodextrin solutions during drying. Drying Technology, 21, 17–34.CrossRef
    ADPI (American Dairy Products Institute). (1992). Standards for grades of dry milk including method of analysis. Bull. 916. Chicago, IL, USA.
    Akinori, M., Masata, M., & Masao, M. (1998). Effect of crystallinity on the glass transition temperature of starch. Journal of Agricultural and Food Chemistry, 46, 98–103.CrossRef
    Bhandari, B. R., Datta, N., & Howes, T. (1997). Problem associated with spray drying of sugar–rich foods. Drying Technology, 15, 671–684.CrossRef
    Bröckel, U., Wahl, M., Kirsch, R., & Feise, H. J. (2006). Formation and growth of crystal bridges in bulk solids. Chemical Engineering & Technology, 29, 691–695.CrossRef
    Caric, M. (2003). Milk powders: types and manufacture and physical and functional properties of milk powders. In H. Roginski, J. W. Fuquay, & P. F. Fox (Eds.), Encyclopedia of dairy sciences (pp. 1869–1880). New York: Academic.
    Chen, X. D., & Özkan, N. (2007). Stickiness, functionality, and microstructure of food powders. Drying Technology, 25, 959–969.CrossRef
    Chung, M. S., Ruan, R. R., Chen, P., Chung, S. H., Ahn, T. H., & Lee, K. H. (2000). Study of caking in powdered foods using nuclear magnetic resonance spectroscopy. Journal of Food Science, 65, 134–138.CrossRef
    Cruz, M. A. A., Passos, M. L., & Ferreira, W. R. (2005). Final drying of whole milk powder in vibrated-fluidized beds. Drying Technology, 23, 2021–2037.CrossRef
    Dacanal, G. C., & Menegalli, F. C. (2010). Selection of operational parameters for the production of instant soy protein isolate by pulsed fluid bed agglomeration. Powder Technology, 203(3), 565–573.
    Descamps, N., Palzer, S., Roos, Y. H., & Fitzpatrick, J. J. (2013). Glass transition and flowability/caking behaviour of maltodextrin DE 21. Journal of Food Engineering, 119, 809–813.CrossRef
    Dhanalakshmi, K., & Bhattacharya, S. (2014). Agglomeration of turmeric powder and its effect on physico-chemical and microstructural characteristics. Journal of Food Engineering, 120, 124–134.CrossRef
    Dhanalakshmi, K., Ghosal, S., & Bhattacharya, S. (2011). Agglomeration of food powder and applications. Critical Reviews in Food Science and Nutrition, 51(5), 432–441.CrossRef
    El-Nagar, G., Clowes, G., Tudoricǎ, C. M., Kuri, V., & Brennan, C. S. (2002). Rheological quality and stability of yoghurt-ice cream with added inulin. International Journal of Dairy Technology, 55, 89–93.CrossRef
    Fitzpatrick, J. J., Barry, K., Cerqueira, P. S. M., Iqbal, T., O’Neill, J., & Roos, Y. H. (2007). Effect of composition and storage conditions on the flowability of dairy powders. International Dairy Journal, 17, 383–392.CrossRef
    Fox, T. G., & Flory, P. J. (1950). Second-order transition temperatures and related properties of polystyrene. Journal of Applied Physics, 21, 581–591.CrossRef
    Glibowski, P., & Bukowska, A. (2011). The effect of pH, temperature and heating time on inulin chemical stability. Acta Scientiarum Polonorum Seria: Technologia Alimentaria, 10, 189–196.
    Golde, A. E., & Schmidt, K. A. (2005). Quality of coffee creamers as a function of protein source. Journal of Food Quality, 28(1), 46–61.CrossRef
    Goula, A. M., & Adamopoulos, K. G. (2005). Spray drying of tomato pulp in dehumidified air: II. The effect on powder properties. Journal of Food Engineering, 66, 35–42.CrossRef
    Goula, A. M., & Adamopoulos, K. G. (2008). Effect of maltodextrin addition during spray drying of tomato pulp in dehumidified air: II. powder properties. Drying Technology, 26, 726–737.CrossRef
    Goula, A. M., & Adamopoulos, K. G. (2010). A new technique for spray drying orange juice concentrate. Innovative Food Science & Emerging Technologies, 11, 342–351.CrossRef
    Griffin, V. K., & Brooks, J. R. (1989). Production and size distribution of rice maltodextrins hydrolyzed from milled rice flour using heat‐stable alpha‐amylase. Journal of Food Science, 54, 190–193.CrossRef
    Hooda, S., & Jood, S. (2005). Organoleptic and nutritional evaluation of wheat biscuits supplemented with untreated and treated fenugreek flour. Food Chemistry, 90, 427–435.
    Hursh, H., & Martin, J. (2005). Low-carb and beyond: the health benefits of inulin. Cereal Foods World, 50, 57–60.
    Jakubczyk, E., Ostrowska‐Ligeza, E., & Gondek, E. (2010). Moisture sorption characteristics and glass transition temperature of apple puree powder. International Journal of Food Science and Technology, 45, 2515–2523.CrossRef
    Jinapong, N., Suphantharika, M., & Jamnong, J. (2008). Production of instant soymilk powders by ultrafiltration, spray drying and fluidized bed agglomeration. Journal of Food Engineering, 84, 194–205.CrossRef
    Kage, M., Yang, Q., Sato, H., Matsumoto, S., Kaji, R., Akiguchi, I., & Tooyama, I. (2001). Acidic fibroblast growth factor (FGF-1) in the anterior horn cells of ALS and control cases. Neuroreport, 12, 3799–3803.CrossRef
    Kalogiannia, E. P., Xynogalos, V. A., Karapantsios, T. D., & Kostloglou, M. (2002). Effect of feed concentration on the production of pregelatinized starch in a double drum dryer. LWT- Food Science and Technology, 35(8), 703–711.CrossRef
    Kasapis, S. (2005). Glass transition phenomena in dehydrated model systems and foods: a review. Drying Technology, 23, 731–757.CrossRef
    Kelly, P. M., Oldfield, D. J., & O’Kennedy, B. T. (1999). The thermostability of spray dried imitation coffee whiteners. International Journal of Dairy Technology, 52, 107–113.CrossRef
    Kha, T. C., Nguyen, M. H., & Roach, P. D. (2010). Effects of spray drying conditions on the physicochemical and antioxidant properties of the Gac (Momordica cochinchinensis) fruit aril powder. Journal of Food Engineering, 98, 385–392.CrossRef
    Kim, Y., Faqih, M. N., & Wang, S. S. (2001). Factors affecting gel formation of inulin. Carbohydrate Polymers, 46, 135–145.CrossRef
    Le Meste, M., Champion, D., Roudaut, G., Blond, G., & Simatos, D. (2002). Glass transition and food technology: a critical appraisal. Journal of Food Science, 67, 2444–2458.CrossRef
    Mirhosseini, H., Tan, C. P., Hamid, N. S. A., & Yusof, S. (2009). Characterization of the influence of main emulsion components on cloudiness, size index, conductivity and emulsion stability of orange beverage emulsion using response surface methodology. Food Hydrocolloids, 23, 271–280.
    Musielak, G., & Mierzwa, D. (2009). Permanent strains in clay-like material during drying. Drying Technology, 27(7–8), 894–902.CrossRef
    Nindo, C. I., & Tang, J. (2007). Refractance Window dehydration technology: a novel contact drying method. Drying Technology, 25(1), 37–48.CrossRef
    Oldfield, D., & Singh, H. (2005). Functional properties of milk powders. Food SScience and Technology-New York-Marcel Dekker, 146, 365.
    Papadakis, S. E., Gardeli, C., & Tzia, C. (1998). Raisin extract powder: production, physical and sensory properties. In Proc. 11th International Drying Symposium IDS (Vol. 98, pp. 1207–1213).
    Peleg, M., & Mannheim, C. H. (1977). The mechanism of caking of powdered onion. Journal of Food Processing and Preservation, 1, 3–11.CrossRef
    Potter, N. N. (1968). Food science. Westport: AVI Publishing Company.
    Pua, C. K., Hamid, N. S. A., Tan, C. P., Mirhosseini, H., Rahman, R. B. A., & Rusul, G. (2010). Optimization of drum drying processing parameters for production of jackfruit (Artocarpus heterophyllus) powder using response surface methodology. LWT--Food Science and Technology, 43, 343–349.CrossRef
    Ren, G. Y., Li, D., Wang, L. J., Özkan, N., & Mao, Z. H. (2010). Morphological properties and thermoanalysis of micronized cassava starch. Carbohydrate Polymers, 79, 101–105.CrossRef
    Ronkart, S. N., Blecker, C. S., Fourmanoir, H., Fougnies, C., et al. (2007). Isolation and identification of inulooligosaccharides resulting from inulin hydrolysis. Analytica Chimica Acta, 604, 81–87.CrossRef
    Roos, Y. H. (1995). Glass transition-related physicochemical changes in foods: chemical and rheological changes during phase transition in food. Food Technology, 49(10), 97–102.
    Schuck, P., Jeantet, R., & Dolivet, A. (2012). Analytical methods for food and dairy powders. John Wiley & Sons.
    Schuck, P., le Floch-Fouere, C., & Jeantet, R. (2013). Changes in functional properties of milk protein powders: effects of vacuum concentration and drying. Drying Technology, 31, 1578–1591.CrossRef
    Singh, A. K., Selvam, R. P., & Sivakumar, T. (2010). Isolation, characterisation and formulation properties of a new plant gum obtained from mangifera indica. International Journal of Pharmacy Biomedical Research, 1, 35–41.
    Tabatabaee Amid, B., & Mirhosseini, H. (2012). Optimization of aqueous extraction of gum from Durian (Durio zibethinus) seed: a potential, low cost source of hydrocolloid. Food Chemistry, 132, 1258–1268.
    Uthumporn, U., Zaidul, I. S., & Karim, A. A. (2010). Hydrolysis of granular starch at sub-gelatinization temperature using a mixture of amylolytic enzymes. Food and Bioproducts Processing, 88, 47–54.CrossRef
    Vega-Mercado, H., Marcela Gongora-Nieto, M., & Barbosa-Cánovas, G. V. (2001). Advances in dehydration of foods. Journal of Food Engineering, 49, 271–289.CrossRef
    WHO (Word health organization) (2012). Bulk density and tapped density of powders. Document QAS/11.450.
  • 作者单位:Simin Hedayatnia (1)
    Hamed Mirhosseini (1)
    Sahar Tamnak (1)
    Fatemeh Golpira (1)

    1. Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Food Science
    Chemistry
    Agriculture
    Biotechnology
  • 出版者:Springer New York
  • ISSN:1935-5149
文摘
This study was conducted to investigate the effects of inulin (0, 2.5, 5, and 7.5 %), maltodextrin (0, 15, 20, and 25 %), and different drying processes (one- and two-stage drying) on the morphology and physicochemical properties of regular and instant reduced-fat creamers. The present study showed that the drum-dried creamer containing 0 % maltodextrin and 0 % inulin was fully sticky powder with dark brown color. It was found that the maximum increase in maltodextrin (from 0 to 25 %) and inulin (from 0 to 7.5 %) resulted in the creamer with the highest glass transition temperature and the lowest stickiness among all formulated creamers. The application of two-stage drying involving fluidized bed drying resulted in further improvement of the glass transition temperature and stickiness of the reduced fat instant creamer. The instant creamers obtained from two-stage drying had considerably higher glass transition temperature and lower bulk density than the regular creamers from one-stage drying. Such improvement could be due to the reduction of bulk density induced by fluidized bed drying. This might be because of higher porosity of the creamer particles after agglomeration. The current study revealed that the addition of high amounts of inulin and maltodextrin also played a significant role in the reduction of bulk density and further improvement of glass transition temperature (Tg) and solubility of the reduced fat creamer. The instant reduced fat creamer containing 25 % maltodextrin and 7.5 % inulin had the most desirable characteristics among all formulated creamers.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700