Calmodulin disruption impacts growth and motility in juvenile liver fluke
详细信息    查看全文
  • 作者:Erin M. McCammick ; Paul McVeigh ; Paul McCusker ; David J. Timson…
  • 关键词:Fasciola hepatica ; Calmodulin ; Flukicide target ; RNAi ; Growth phenotype ; Motility phenotype
  • 刊名:Parasites & Vectors
  • 出版年:2016
  • 出版时间:December 2016
  • 年:2016
  • 卷:9
  • 期:1
  • 全文大小:1,916 KB
  • 参考文献:1.Keiser J, Utzinger J. Emerging foodborne trematodiasis. Emerging Infect Dis. 2005;11(10):1507–14.PubMedCentral CrossRef PubMed
    2.Hotez PJ, Brindley PJ, Bethony JM, King CH, Pearce EJ, Jacobson J. Helminth infections: the great neglected tropical diseases. J Clin Invest. 2008;118(4):1311–21.PubMedCentral CrossRef PubMed
    3.Fairweather I. Reducing the future threat from (liver) fluke: realistic prospect or quixotic fantasy? Vet Parasitol. 2011;180(1–2):133–43.CrossRef PubMed
    4.Brennan GP, Fairweather I, Trudgett A, Hoey E, McCoy E, McConville M, et al. Understanding triclabendazole resistance. Exp Mol Pathol. 2007;82:104–9.CrossRef PubMed
    5.Winkelhagen AJ, Mank T, de Vries PJ, Soetekouw R. Apparent triclabendazole-resistant human Fasciola hepatica infection, the Netherlands. Emerging Infect Dis. 2012;18(6):1028–9.PubMedCentral CrossRef PubMed
    6.Fairweather I. Triclabendazole: new skills to unravel an old(ish) enigma. J Helminthol. 2005;79(3):227–34.CrossRef PubMed
    7.Bootman MD, Collins TJ, Peppiatt CM, Prothero LS, MacKenzie L, De Smet P, et al. Calcium signalling--an overview. Semin Cell Dev Biol. 2001;12(1):3–10.CrossRef PubMed
    8.Berridge MJ, Bootman MD, Roderick HL. Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol. 2003;4(7):517–29.CrossRef PubMed
    9.Saimi Y, Kung C. Calmodulin as an ion channel subunit. Annu Rev Physiol. 2002;64:289–311.CrossRef PubMed
    10.O’Day DH. CaMBOT: profiling and characterizing calmodulin-binding proteins. Cell Signal. 2003;15(4):347–54.CrossRef PubMed
    11.Hoeflich KP, Ikura M. Calmodulin in action: diversity in target recognition and activation mechanisms. Cell. 2002;108(6):739–42.CrossRef PubMed
    12.Day TA, Bennett JL, Pax RA. Praziquantel: The enigmatic antiparasitic. Parasitol Today. 1992;8(10):342–4.CrossRef PubMed
    13.Taft AS, Yoshino TP. Cloning and functional characterization of two calmodulin genes during larval development in the parasitic flatworm Schistosoma mansoni. J Parasitol. 2011;97(1):72–81.PubMedCentral CrossRef PubMed
    14.Guidi A, Mansour NR, Paveley RA, Carruthers IM, Besnard J, Hopkins AL, et al. Application of RNAi to genomic drug target validation in schistosomes. PLoS Negl Trop Dis. 2015;9(5):e0003801.PubMedCentral CrossRef PubMed
    15.Katsumata T, Kohno S, Yamaguchi K, Hara K, Aoki Y. Hatching of Schistosoma mansoni eggs is a Ca2+/calmodulin-dependent process. Parasitol Res. 1989;76(1):90–1.CrossRef PubMed
    16.Kawamoto F, Shozawa A, Kumada N, Kojima K. Possible roles of cAMP and Ca2+ in the regulation of miracidial transformation in Schistosoma mansoni. Parasitol Res. 1989;75(5):368–74.CrossRef PubMed
    17.Zhou J, Sun J, Huang Y, Zhou C, Liang P, Zheng M, et al. Molecular identification, immunolocalization, and characterization of Clonorchis sinensis calmodulin. Parasitol Res. 2013;112(4):1709–17.CrossRef PubMed
    18.Hu S, Law PK, Lv Z, Wu Z, Fung MC. Molecular characterization of a calcium-binding protein SjCa8 from Schistosoma japonicum. Parasitol Res. 2008;103(5):1047–53.CrossRef PubMed
    19.Russell SL, McFerran NV, Hoey EM, Trudgett A, Timson DJ. Characterisation of two calmodulin-like proteins from the liver fluke, Fasciola hepatica. Biol Chem. 2007;388(6):593–9.CrossRef PubMed
    20.Russell SL, McFerran NV, Moore CM, Tsang Y, Glass P, Hoey EM, et al. A novel calmodulin-like protein from the liver fluke, Fasciola hepatica. Biochimie. 2012;94(11):2398–406.CrossRef PubMed
    21.McVeigh P, McCammick EM, McCusker P, Morphew RM, Mousley A, Abidi A, et al. RNAi dynamics in juvenile Fasciola spp. liver flukes reveals the persistence of gene silencing. PLoS Negl Trop Dis. 2014;8(9):e3185.PubMedCentral CrossRef PubMed
    22.McGonigle L, Mousley A, Marks NJ, Brennan GP, Dalton JP, Sprithill TW, et al. The silencing of cysteine proteases in Fasciola hepatica newly excysted juveniles using RNA interference reduces gut penetration. Int J Parasitol. 2008;38:149–55.CrossRef PubMed
    23.Cwiklinski K, Dalton JP, Dufresne PJ, La Course J, Williams DJL, Hodgkinson J, et al. The Fasciola hepatica genome: gene duplication and polymorphism reveals adaption to the host environment and the capacity for rapid evolution. Genome Biol. 2015;16(1):71.PubMedCentral CrossRef PubMed
    24.Rutherford K, Parkhill J, Crook J, Horsnell T, Rice P, Rajandream MA, et al. Artemis: sequence visualization and annotation. Bioinformatics. 2000;16(10):944–5.CrossRef PubMed
    25.GATC Biotech. www.​gatc-biotech.​com . Accessed April 2013.
    26.Integrated DNA technologies. www.​idtdna.​com . Accessed May 2013.
    27.Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29(9):e45.PubMedCentral CrossRef PubMed
    28.Real Time PCR Miner software. http://​miner.​ewindup.​info . Accessed May-August 2013.
    29.Zhao S, Fernald RD. Comprehensive algorithm for quantitative real-time polymerase chain reaction. J Comput Biol. 2005;12(8):1047–64.PubMedCentral CrossRef PubMed
    30.Pierson L, Mousley A, Devine L, Marks NJ, Day TA, Maule AG. RNA interference in a cestode reveals specific silencing of selected highly expressed gene transcripts. Int J Parasitol. 2010;40:605–15.CrossRef PubMed
    31.Bar-Sagi D, Prives J. Trifluoperazine, a calmodulin antagonist, inhibits muscle cell fusion. J Cell Biol. 1983;97(5 Pt 1):1375–80.CrossRef PubMed
    32.Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9(7):671–5.CrossRef PubMed
    33.Karabinos A, Büssing I, Schulze E, Wang J, Weber J, Schnabel R. Functional analysis of the single calmodulin gene in the nematode Caenorhabditis elegans by RNA interference and 4-D microscopy. Eur J Cell Biol. 2003;82(11):557–63.CrossRef PubMed
    34.Rinaldi G, Morales ME, Cancela M, Castillo E, Brindley PJ, Tort JF. Development of functional genomic tools in trematodes: RNA interference and luciferase reporter gene activity in Fasciola hepatica. PLoS Negl Trop Dis. 2008;2(7):e260.PubMedCentral CrossRef PubMed
    35.McVeigh P, Mair GR, Novozhilova E, Day A, Zamanian M, Marks NJ, et al. Schistosome I/Lamides--a new family of bioactive helminth neuropeptides. Int J Parasitol. 2011;41(8):905–13.PubMedCentral CrossRef PubMed
    36.Davies C, Smyth JD. In vitro cultivation of Fasciola hepatica metacercariae and of partially developed flukes recovered from mice. Int J Parasitol. 1978;8(2):125–31.CrossRef PubMed
    37.Threadgold LT, Gallagher SS. Electron microscope studies of Fasciola hepatica. I. The ultrastructure and interrelationship of the parenchymal cells. Parasitology. 1966;56(2):299–304.CrossRef PubMed
    38.Gallagher SS, Threadgold LT. Electron-microscope studies of Fasciola hepatica. II. The interrelationship of the parenchyma with other organ systems. Parasitology. 1967;57(4):627–32.CrossRef
    39.Pax RA, Day TA, Miller CL, Bennett JL. Neuromuscular physiology and pharmacology of parasitic flatworms. Parasitology. 1996;113(Suppl):S83–96.CrossRef PubMed
    40.Dell'Oca N, Basika T, Corvo I, Castillo E, Brindley PJ, Rinaldi G, et al. RNA interference in Fasciola hepatica newly excysted juveniles: long dsRNA induces more persistent silencing than siRNA. Mol Biochem Parasitol. 2014;197(1–2):28–35.CrossRef PubMed
    41.Krautz-Peterson G, Radwanska M, Ndegwa D, Shoemaker CB, Skelly PJ. Optimizing gene suppression in schistosomes using RNA interference. Mol Biochem Parasitol. 2007;153:194–202.CrossRef PubMed
    42.Walsh MP. Calmodulin and the regulation of smooth muscle contraction. Mol Cell Biochem. 1994;135(1):21–41.CrossRef PubMed
    43.Ashizawa K, Tomonaga H, Tsuzuki Y. Regulation of flagellar motility of fowl spermatozoa: evidence for the involvement of intracellular free Ca2+ and calmodulin. J Reprod Fertil. 1994;101(2):265–72.CrossRef PubMed
    44.Minardi AJ, Christ D, Saz HJ. Effects of calmodulin and protein kinase C antagonists on muscle in the filariid, Acanthocheilonema viteae. J Parasitol. 1995;81(6):989–96.CrossRef PubMed
    45.Poenie M, Alderton J, Tsien RY, Steinhardt RA. Changes of free calcium levels with stages of the cell division cycle. Nature. 1985;315(6015):147–9.CrossRef PubMed
    46.Hepler P. The role of calcium in cell division. Cell Calcium. 1994;16(4):322–30.CrossRef PubMed
    47.Berchtold MW, Villalobo A. The many faces of calmodulin in cell proliferation, programmed cell death, autophagy, and cancer. Biochim Biophys Acta. 2014;1843(2):398–435.CrossRef PubMed
  • 作者单位:Erin M. McCammick (1)
    Paul McVeigh (1)
    Paul McCusker (1)
    David J. Timson (1)
    Russell M. Morphew (2)
    Peter M. Brophy (2)
    Nikki J. Marks (1)
    Angela Mousley (1)
    Aaron G. Maule (1)

    1. Microbes & Pathogen Biology: Institute for Global Food Security, School of Biological Sciences, Queen’s, University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK
    2. Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Penglais, Aberystwyth, Ceredigion, SY23 3FL, UK
  • 刊物主题:Parasitology; Infectious Diseases; Tropical Medicine; Entomology;
  • 出版者:BioMed Central
  • ISSN:1756-3305
文摘
Background Deficiencies in effective flukicide options and growing issues with drug resistance make current strategies for liver fluke control unsustainable, thereby promoting the need to identify and validate new control targets in Fasciola spp. parasites. Calmodulins (CaMs) are small calcium-sensing proteins with ubiquitous expression in all eukaryotic organisms and generally use fluctuations in intracellular calcium levels to modulate cell signalling events. CaMs are essential for fundamental processes including the phosphorylation of protein kinases, gene transcription, calcium transport and smooth muscle contraction. In the blood fluke Schistosoma mansoni, calmodulins have been implicated in egg hatching, miracidial transformation and larval development. Previously, CaMs have been identified amongst liver fluke excretory-secretory products and three CaM-like proteins have been characterised biochemically from adult Fasciola hepatica, although their functions remain unknown.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700