Infrared planar laser-induced fluorescence with a CW quantum-cascade laser for spatially resolved CO2 and gas properties
详细信息    查看全文
  • 作者:Christopher S. Goldenstein ; Victor A. Miller ; Ronald K. Hanson
  • 关键词:Laser ; induced fluorescence ; Quantum ; cascade laser ; Infrared photophysics ; CO2
  • 刊名:Applied Physics B: Lasers and Optics
  • 出版年:2015
  • 出版时间:August 2015
  • 年:2015
  • 卷:120
  • 期:2
  • 页码:185-199
  • 全文大小:3,373 KB
  • 参考文献:1.R.B. Miles, E. Udd, M. Zimmermann, Quantitative flow visualization in sodium vapor seeded hypersonic helium. Appl. Phys. Lett. 32, 317?9 (1978)ADS View Article
    2.E.C. Rea, R.K. Hanson, Rapid laser-wavelength modulation spectroscopy used as a fast temperature measurement technique in hydrocarbon combustion, Appl. Opt. 27, 4454?64?(1988)
    3.A.Y. Chang, B.E. Battles, R.K. Hanson, Simultaneous measurements of velocity, temperature, and pressure using rapid CW wavelength-modulation laser-induced fluorescence of OH. Opt. Lett. 15, 706‰8 (1990)ADS View Article
    4.J. Hult, I.S. Burns, C.F. Kaminski, Measurements of the indium hyperfine structure in an atmospheric-pressure flame by use of diode-laser-induced fluorescence. Opt. Lett. 29, 827′9 (2004)ADS View Article
    5.I.S. Burns, C.F. Kaminski, Diode laser induced fluorescence for gas-phase diagnostics. Z. Phys. Chem. 225, 1343″66 (2011)View Article
    6.G. Kychakoff, R.D. Howe, R.K. Hanson, J.C. McDaniel, Quantitative visualization of combustion species in a plane. Appl. Opt. 18, 3225′27 (1982)ADS View Article
    7.M.J. Dyer, D.R. Crosley, Two-dimensional imaging of OH laser-induced fluorescence in a flame. Opt. Lett. 8, 382?4 (1982)ADS View Article
    8.G. Kychakoff, R.D. Howe, R.K. Hanson, M.C. Drake, R.W. Pitz, M. Lapp, C.M. Penney, Science 224, 382?4 (1984)ADS View Article
    9.C. Schulz, V. Sick, Tracer-LIF diagnostics: quantitative measurement of fuel concentration, temperature and fuel/air ratio in practical combustion systems. Prog. Energy Combust. Sci. 31, 75′1 (2005)View Article
    10.W.D. Kulatilaka, S.V. Naik, R.P. Lucht, Development of high-spectral-resolution planar laser-induced fluorescence imaging diagnostics for high-speed gas flows. AIAA J. 46, 17‰ (2008)ADS View Article
    11.Ronald K. Hanson, Applications of quantitative laser sensors to kinetics, propulsion and practical energy systems. Proc. Combust. Inst. 33, 1‰ (2011)View Article
    12.B.J. Kirby, R.K. Hanson, Planar laser-induced fluorescence imaging of carbon monoxide using vibrational (infrared) transitions. Appl. Phys. B 69, 505‰7 (1999)ADS View Article
    13.B.J. Kirby, R.K. Hanson, Imaging of CO and CO2 using infrared planar laser-induced fluorescence. Proc. Combust. Inst. 28, 253‵9 (2000)View Article
    14.B.J. Kirby, R.K. Hanson, CO2 imaging with saturated planar laser-induced vibrational fluorescence. Appl. Opt. 40, 6136?44 (2001)ADS View Article
    15.D.A. Rothamer, R.K. Hanson, Temperature and pressure imaging using infrared planar laser-induced fluorescence. Appl. Opt. 49, 6436?47 (2010)ADS View Article
    16.Z.T. Alwahabi, J. Zetterberg, Z.S. Li, M. Alden, High resolution polarization spectroscopy and laser induced fluorescence of CO2 around 2?μm. Eur. Phys. J. D 42, 41? (2007)ADS View Article
    17.J. Zetterberg, S. Blomberg, J. Gustafson, Z.W. Sun, Z.S. Li, E. Lundgren, M. Aldén, An in situ set up for the detection of CO2 from catalytic CO oxidation by using planar laser-induced fluorescence. Rev. Sci. Instrum. 83, 053104?(2012)
    18.H. Li, R.K. Hanson, J.B. Jeffries, H. Li, R.K. Hanson, J.B. Jeffries, Meas. Sci. Technol. 15, 1285′90 (2004)ADS View Article
    19.L.S. Rothman, I.E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P.F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L.R. Brown, A. Campargue, K. Chance, E.A. Cohen, L.H. Coudert, V.M. Devi, B.J. Drouin, A. Fayt, J.-M. Flaud, R.R. Gamache, J.J. Harrison, J.-M. Hartmann, C. Hill, J.T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R.J. Le Roy, G. Li, D.A. Long, O.M. Lyulin, C.J. Mackie, S.T. Massie, S. Mikhailenko, H.S.P. Müller, O.V. Naumenko, A.V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E.R. Polovtseva, C. Richard, M.A.H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G.C. Toon, VlG Tyuterev, G. Wagner, The HITRAN2012 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Trans. 130, 4‰ (2013)ADS View Article
    20.B.J. Kirby, Infrared planar laser-induced fluorescence imaging and applications to imaging of carbon monoxide and carbon dioxide, PhD Thesis, Stanford University (2001)
    21.R.M. Spearrin, W. Ren, J.B. Jeffries, R.K. Hanson, Multi-band infrared CO2 absorption sensor for sensitive temperature and species measurements in high-temperature gases. Appl. Phys. B 116, 855?5 (2014)ADS View Article
    22.Christopher S. Goldenstein, Jay B. Jeffries, Ronald K. Hanson, Diode laser measurements of linestrength and temperature-dependent lineshape parameters of H2O-, CO2-, and N2-perturbed H2O transitions near 2474 and 2482 nm. J. Quant. Spectrosc. Radiat. Trans. 130, 100?1 (2013)ADS View Article
    23.D.C. Allen, T.J. Price, C.J.S.M. Simpson, Vibrational deactivation of the bending mode of CO2 measured between 1500?K and 150?K, Chem. Phys. Lett. 45, 183?7?(1976)
    24.G.D. Billing, Semiclassical calculation of energy transfer in polyatomic molecules. VII. Intra- and inter-molecular energy transfer in N2?+?CO2. Chem. Phys. 67, 35?
  • 作者单位:Christopher S. Goldenstein (1)
    Victor A. Miller (1)
    Ronald K. Hanson (1)

    1. High Temperature Gasdynamics Laboratory, Stanford University, Stanford, CA, 94305, USA
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Electromagnetism, Optics and Lasers
    Physical Chemistry
    Laser Technology and Physics and Photonics
    Quantum Optics, Quantum Electronics and Nonlinear Optics
    Optical Spectroscopy and Ultrafast Optics
    Physics and Applied Physics in Engineering
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-0649
文摘
The design and demonstration of a new infrared laser-induced fluorescence (IR-LIF) technique that enables spatially resolved measurements of CO2, temperature, and pressure, with potential for velocity, are presented. A continuous-wave, wavelength-tunable, quantum-cascade laser (QCL) near \(4.3\,\upmu \hbox {m}\) with up to 120mW was used to directly excite the asymmetric-stretch fundamental-vibration band of CO2 for approximately 200 to \(10^5\) times more absorbance compared with previous IR-LIF techniques. This enabled LIF detection limits (signal-to-noise ratio of 1) of 20 and 70ppm of CO2 in Ar and \(\hbox {N}_2\), respectively, at 1 bar and 296K in static-cell experiments. Simplified and detailed kinetic models for simulating the LIF signal as a function of gas properties are presented and enable quantitative, calibration-free, IR-LIF measurements of CO2 mole fraction within 1of known values at 0.5r. By scanning the laser across two absorption transitions and performing a multi-line Voigt fit to the LIF signal, measurements of temperature, pressure, and \(\chi _{\hbox {CO}_2}\) within 2% of known values were obtained. LIF measurements of gas pressure at a repetition rate up to 200Hz (in argon) are also presented. Planar-LIF (PLIF) was used to image steady and unsteady CO2–Ar jets at 330 frames per second with a spatial signal-to-noise ratio (SNR) up to 25, corresponding to a detection limit (SNR=1) of 200 ppm with a projected pixel size of \(40\,\upmu \hbox {m}\). The gas pressure was measured within \(3 \pm 2\)% of the known value (1 bar) at 5Hz by scanning the QCL across the P(42) absorption transition and least-squares fitting a Voigt profile to the PLIF signal. Spatially resolved measurements of absolute CO2 mole fraction in a laminar jet are also presented.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700