Off-line and On-line Enrichment of α-Aminocephalosporins for Their Analysis in Surface Water Samples Using CZE Coupled to LIF
详细信息    查看全文
  • 作者:Azza H. Rageh ; Karl-Friedrich Klein ; Ute Pyell
  • 关键词:Capillary zone electrophoresis ; Laser induced fluorescence detection ; α ; Aminocephalosporins ; Surface water ; Large volume sample stacking/sweeping ; Solid phase extraction
  • 刊名:Chromatographia
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:79
  • 期:3-4
  • 页码:225-241
  • 全文大小:1,202 KB
  • 参考文献:1.Hernando MD, Mezcua M, Fernandez-Alba AR, Barcelo D (2006) Talanta 69:334–342CrossRef
    2.Zhang T, Li B (2011) Crit Rev Environ Sci Technol 41:951–998CrossRef
    3.Seifrtova M, Novakova L, Lino C, Pena A, Solich P (2009) Anal Chim Acta 649:158–179CrossRef
    4.Kuemmerer K, Henninger A (2003) Clin Microbiol Infect 9:1203–1214CrossRef
    5.Gomez MJ, Petrovic M, Fernandez-Alba AR, Barcelo D (2006) J Chromatogr A 1114:224–233CrossRef
    6.Kuemmerer K (2009) Chemosphere 75:417–434CrossRef
    7.Diaz-Cruz MS, Barcelo D (2006) Anal Bioanal Chem 386:973–985CrossRef
    8.Lin AYC, Yu TH, Lin CF (2008) Chemosphere 74:131–141CrossRef
    9.Watkinson AJ, Murby EJ, Kolpin DW, Costanzo SD (2009) Sci Total Environ 407:2711–2723CrossRef
    10.Gulkowska A, He Y, So MK, Yeung LWY, Leung HW, Giesy JP, Lam PKS, Martin M, Richardson BJ (2007) Mar Pollut Bull 54:1287–1293CrossRef
    11.Wang XH, Lin AYC (2012) Environ Sci Technol 46:12417–12426CrossRef
    12.Fabbri D, Minella M, Maurino V, Minero C, Vione D (2015) Chemosphere 134:452–458CrossRef
    13.Nageswara Rao R, Venkateswarlu N, Narsimha R (2008) J Chromatogr A 1187:151–164CrossRef
    14.Mitchell SM, Ullman JL, Teel AL, Watts RJ (2014) Sci Total Environ 466–467:547–555CrossRef
    15.Lara FJ, del Olmo-Iruela M, Cruces-Blanco C, Quesada-Molina C, Garcia-Campana AM (2012) Trends Anal Chem 38:52–66CrossRef
    16.Cha JM, Yang S, Carlson KH (2006) J Chromatogr A 1115:46–57CrossRef
    17.Hirsch R, Ternes T, Haberer K, Kratz KL (1999) Sci Total Environ 225:109–118CrossRef
    18.Wang P, Yuan T, Hu J, Tan Y (2011) Int J Environ Anal Chem 91:1267–1281CrossRef
    19.Hernandez F, Ibanez M, Bade R, Bijlsma L, Sancho JV (2014) Trends Anal Chem 63:140–157CrossRef
    20.Fatta D, Nikolaou A, Achilleos A, Meric S (2007) Trends Anal Chem 26:515–533CrossRef
    21.Hernandez F, Sancho JV, Ibanez M, Guerrero C (2007) Trends Anal Chem 26:466–485CrossRef
    22.Stolker AAM, Zuidema T, Nielen MWF, Nielen MWF (2007) Trends Anal Chem 26:967–979CrossRef
    23.Petrovic M, Hernando MD, Diaz-Cruz MS, Barcelo D (2005) J Chromatogr A 1067:1–14CrossRef
    24.Garcia-Campana AM, Gamiz-Gracia L, Lara FJ, del Olmo-Iruela M, Cruces-Blanco C (2009) Anal Bioanal Chem 395:967–986CrossRef
    25.Urbanek M, Krivankova L, Bocek P (2003) Electrophoresis 24:466–485CrossRef
    26.Chien RL, Burgi DS (1992) Anal Chem 64:489A–496ACrossRef
    27.Chien RL, Burgi DS (1992) Anal Chem 64:1046–1050CrossRef
    28.Quirino JP, Terabe S (1998) Science 282:465–468CrossRef
    29.Puig P, Borrull F, Aguilar C, Calull M (2007) Chromatographia 65:501–504CrossRef
    30.Puig P, Borrull F, Calull M, Benavente F, Sanz-Nebot V, Barbosa J, Aguilar C (2007) Anal Chim Acta 587:208–215CrossRef
    31.Quesada-Molina C, del Olmo Iruela M, Garcia-Campana AM (2012) Anal Methods 4:2341–2347CrossRef
    32.Serrano JM, Silva M (2007) Electrophoresis 28:3242–3249CrossRef
    33.Landers JP (2008) Handbook of capillary and microchip electrophoresis and associated microtechniques, 3rd edn. CRC Press, Boca Raton
    34.Huhn C, Ruhaak LR, Mannhardt J, Wuhrer M, Neusuess C, Deelder AM, Meyer H (2012) Electrophoresis 33:563–566CrossRef
    35.Riekkola ML, Joensson JA, Smith RM (2004) Pure Appl Chem 76:443–451CrossRef
    36.Gros M, Rodriguez-Mozaz S, Barcelo D (2013) J Chromatogr A 1292:173–188CrossRef
    37.Deshpande AD, Baheti KG, Chatterjee NR (2004) Curr Sci 87:1684–1695
    38.Lindberg R, Jarnheimer PA, Olsen B, Johansson M, Tysklind M (2004) Chemosphere 57:1479–1488CrossRef
    39.Hefnawy M, El-Shabrawy Y, Belal F (1999) J Pharm Biomed Anal 21:703–707CrossRef
    40.Udenfriend S, Stein S, Boehlen P, Dairman W, Leimgruber W, Weigele M (1972) Science 178:871–872CrossRef
    41.De Bernardo S, Weigele M, Toome V, Manhart K, Leimgruber W, Boehlen P, Stein S, Udenfriend S (1974) Arch Biochem Biophys 163:390–399CrossRef
    42.Stein S, Boehlen P, Udenfriend S (1974) Arch Biochem Biophys 163:400–403CrossRef
    43.Chen RF, Smith PD, Maly M (1978) Arch Biochem Biophys 189:241–250CrossRef
    44.Quirino JP, Terabe S, Otsuka K, Vincent JB, Vigh G (1999) J Chromatogr A 838:3–10CrossRef
    45.Aranas AT, Guidote AM Jr, Quirino JP (2009) Anal Bioanal Chem 394:175–185CrossRef
    46.Huhn C, Puetz M, Martin N, Dahlenburg R, Pyell U (2005) Electrophoresis 26:2391–2401CrossRef
    47.Suliman FEO, Al-Lawati ZH, Al-Kindy SMZ (2008) J Fluoresc 18:1131–1138CrossRef
    48.Rageh AH, Kaltz A, Pyell U (2014) Anal Bioanal Chem 406:5877–5895CrossRef
    49.Maffeo D, Leondiadis L, Mavridis IM, Yannakopoulou K (2006) Org Biomol Chem 4:1297–1304CrossRef
    50.Bayle C, Poinsot V, Fournier-Noel C, Couderc F (2006) In: Pyell U (ed) Electrokinetic chromatography: theory, instrumentation and applications. Wiley, Chichester
    51.Mathies RA, Peck K, Stryer L (1990) Anal Chem 62:1786–1791CrossRef
    52.European Pharmacopoeia (7.8), 7th edn. (2013) Online Version, European directorate for the quality of medicines and healthcare (EDQM), Strasbourg
    53.Huhn C, Pyell U (2010) J Chromatogr A 1217:4476–4486CrossRef
    54.Quesada-Molina C, Garcia-Campana AM, del Olmo-Iruela M (2013) Talanta 115:943–949CrossRef
    55.Weigel S, Kallenborn R, Huhnerfuss H (2004) J Chromatogr A 1023:183–195CrossRef
    56.Opris O, Soran ML, Coman V, Copaciu F, Ristoiu D (2013) Cent Eur J Chem 11:1343–1351CrossRef
    57.Ibanez M, Guerrero C, Sancho JV, Hernandez F (2009) J Chromatogr A 1216:2529–2539CrossRef
    58.Bailon-Perez MI, Garcia-Campana AM, del Olmo-Iruela M, Gamiz-Gracia L, Cruces-Blanco C (2009) J Chromatogr A 1216:8355–8361CrossRef
    59.ICH Harmonised Tripartite Guidelines (1996) Validation of analytical procedures: text and methodology Q2(R1). http://​www.​ich.​org/​products/​guidelines/​quality/​article/​quality-guidelines.​html . Accessed 30 Jan 2015
    60.Reichenbaecher M, Einax JW (2011) Challenges in analytical quality assurance. Springer, BerlinCrossRef
    61.Puig P, Tempels FWA, Somsen GW, de J, Borrull F, Aguilar C, Calull M (2008) Electrophoresis 29:1339–1346CrossRef
    62.Lindberg RH, Wennberg P, Johansson MI, Tysklind M, Andersson BAV (2005) Environ Sci Technol 39:3421–3429CrossRef
    63.Gulkowska A, Leung HW, So MK, Taniyasu S, Yamashita N, Yeung LWY, Richardson BJ, Lei AP, Giesy JP, Lam PKS (2008) Water Res 42:395–403CrossRef
  • 作者单位:Azza H. Rageh (1)
    Karl-Friedrich Klein (2)
    Ute Pyell (1)

    1. Department of Chemistry, University of Marburg, Hans-Meerwein-Straße, 35032, Marburg, Germany
    2. Technische Hochschule Mittelhessen, Wilhelm-Leuschner-Straße 13, 61169, Friedberg, Germany
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Analytical Chemistry
    Organic Chemistry
    Pharmacy
    Biochemistry
    Plant Sciences
    Measurement Science and Instrumentation
  • 出版者:Vieweg Verlag
  • ISSN:1612-1112
文摘
This study examines the potential of application of capillary zone electrophoresis (CZE) coupled to laser-induced fluorescence (LIF) detection involving derivatization with fluorescamine for the separation and determination of α-aminocephalosporins in surface water samples. Via their α-amino group, the non-fluorescent cefadroxil and cefalexin are capable of forming a highly fluorescent derivative via their reaction with fluorescamine. This reaction permits the selective and sensitive detection of aliphatic primary amines when combined with CE/LIF, which was achieved with a low-noise diode laser emitting at a wavelength of 375 nm (P cw = 5.6 mW) in combination with a fiber optic-coupled detection cell. Different types of solid phase extraction cartridges were investigated to select the optimum solid phase providing maximum recovery for the studied antibiotics, which were extracted from spiked Lahn river water samples. Highest recovery (cefalexin 109.4 ± 3.9 % and cefadroxil 92.6 ± 4.0 %) was reached with a polymer-based solid phase (Oasis HLB cartridge), with which a tenfold off-line enrichment was obtained. On-line enrichment was achieved by sweeping and large volume sample stacking (LVSS). The high complex formation constant between the formed derivative and 2-hydroxypropyl-β-cyclodextrin (2-HP-β-CD) and the low electric conductivity of the extract after the off-line enrichment constitute an ideal basis for additional analyte enrichment by sweeping and LVSS. The enrichment efficiency obtainable with this on-line enrichment step (after having filled the complete capillary with the sample solution) in comparison to field-amplified sample stacking (FASS) reaches approximately an additional 25-fold improvement. With the developed method, combining off-line and on-line enrichment with optimized fluorescence detection, detection limits as low as 4.9 and 7.5 ng L−1 are obtained for cefalexin and cefadroxil, respectively, with a starting sample volume as low as 50 mL. The high repeatability and accuracy of the proposed strategy permits its application to the analysis of α-aminocephalosporins in surface water samples. Its applicability can be extended to other environmental compartments and other types of primary amino group containing compounds. In addition, it provides equivalent sensitivity to other methods using more expensive equipment like HPLC–MS/MS. Keywords Capillary zone electrophoresis Laser induced fluorescence detection α-Aminocephalosporins Surface water Large volume sample stacking/sweeping Solid phase extraction

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700