Photosynthetic pigment laser-induced fluorescence indicators for the detection of changes associated with trace element stress in the diatom model species Phaeodactylum tricornutum
详细信息    查看全文
  • 作者:Maria Teresa Cabrita ; Carla Gameiro…
  • 关键词:Laser ; induced fluorescence indicators ; LIF ; Phaeodactylum tricornutum ; Trace element stress detection and monitoring ; Marine coastal areas
  • 刊名:Environmental Monitoring and Assessment
  • 出版年:2016
  • 出版时间:May 2016
  • 年:2016
  • 卷:188
  • 期:5
  • 全文大小:1,741 KB
  • 参考文献:Aggarwal, A., Sharma, I., Tripathi, B.N., Munjal, A.K., Baunthiyal, M., & Sharma, V. (2012). Metal toxicity and Photosynthesis. In S. Itoh, P. Mohanty, K.N. Guruprasad (Eds.), Photosynthesis: overviews on recent progress and future perspectives (pp. 229–236), Chapter 6.
    Apostol, S., Viau, A. A., Tremblay, N., Briantais, J.-M., Prasher, S., Parent, L.-E., & Moya, I. (2003). Laser-induced fluorescence signatures as a tool for remote monitoring of water and nitrogen stresses in plants. Canadian Journal of Remote Sensing, 29(1), 57–65.CrossRef
    Baker, N. R. (2008). Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annual Review of Plant Biology, 59, 89–113.CrossRef
    Barbini, R., Colao, F., Fantoni, R., Micheli, C., Palucci, A., & Ribezzo, S. (1998). Design and application of a lidar fluorosensor system for remote monitoring of phytoplankton. ICES Journal of Marine Science, 55, 793–802.CrossRef
    Brand, L. E., Sunda, W. G., & Guillard, R. R. L. (1986). Reduction of marine phytoplankton reproduction rates by copper and cadmium. Journal of Experimental Marine Biology and Ecology, 96, 225–250.CrossRef
    Buschmann, C. (2007). Variability and application of the chlorophyll fluorescence emission ratio red/far-red of leaves. Photosynthesis Research, 92, 261–271.CrossRef
    Cabrita, M. T., Raimundo, J., Pereira, P., & Vale, C. (2014). Immobilised Phaeodactylum tricornutum as biomonitor of trace element availability in the water column during dredging. Environmental Science and Pollution Research, 21(5), 3572–2581.CrossRef
    Cid, A., Herrero, C., Torres, E., & Abalde, J. (1995). Copper toxicity on the marine microalga Phaeodactylum tricornutum: effects on photosynthesis and related parameters. Aquatic Toxicology, 31, 165–174.CrossRef
    Cid, A., Torres, E., Herrero, C., & Abalde, J. E. (1997). Disorders provoked by copper in the marine diatom Phaeodactylum tricornutum in short-time exposure assays. Cahiers de Biologie Marine, 38, 201–206.
    Cotté-Krieff, M.-H., Guieu, C., Thomas, A. J., & Martin, J.-M. (2000). Sources of Cd, Cu, Ni and Zn in Portuguese coastal waters. Marine Chemistry, 71, 199–214.CrossRef
    D’Ambrosio, N., Szábo, K., & Lichtenthaler, H. K. (1992). Increase of the chlorophyll fluorescence ratio F690/F735 during the autumnal chlorophyll breakdown. Radiation and Environmental Biophysics, 31, 51–62.CrossRef
    Dahn, H. G., Günther, K. P., & Lüdeker, W. (1992). Characterization of drought stress of maize and wheat canopies by means of resolved laser induced fluorescence. EARSel Advances in Remote Sensing, 1(2-II), 12–19.
    Davison, W., & Zhang, H. (1994). In situ speciation measurements of trace components in natural waters using thin-film gels. Nature, 367, 546–548.CrossRef
    De Filippis, L. F., & Pallaghy, C. K. (1976). The effect a sublethal concentration of mercury and zinc on Chlorella. I. Growth characteristic and uptake of metals. Zeitschrift für Pflanzenphysiologie, 78, 197–207.CrossRef
    De Filippis, L. F., & Pallaghy, C. K. (1994). Heavy metals: sources and biological effects. In L. C. Rai & J. P. Gaur (Eds.), Advances in limnology series: algae and water pollution (pp. 31–77). Stuttgart: E. Scheizerbartsche Press.
    Deng, C. N., Zhang, D. Y., Pan, X. L., Chang, F. Q., & Wang, S. Z. (2013). Toxic effects of mercury on PSI and PSII activities, membrane potential and transthylakoid proton gradient in Microsorium pteropus. Journal of Photochemistry and Photobiology B: Biology, 127(5), 1–7.CrossRef
    Doney, S. C. (2010). The growing human footprint on coastal and open-ocean biogeochemistry. Science, 328, 1512–1516.CrossRef
    Eggleton, J., & Thomas, K. V. (2004). A review of factors affecting the release and bioavailability of contaminants during sediment disturbance events. Environment International, 30, 973–980.CrossRef
    Fisher, N. S. (1981). On the selection for heavy metal tolerance in diatoms from the Derwent Estuary, Tasmania. Australian Journal of Marine and Freshwater Research, 32, 555–561.CrossRef
    Franck, F., Juneau, P., & Popovic, R. (2002). Resolution of the photosystem I and photosystem II contributions to chlorophyll fluorescence of intact leaves at room temperature. Biochimica et Biophysica Acta, 1556, 239–246.CrossRef
    González-Dávila, M. (1995). The role of phytoplankton cells on the control of heavy metal concentration in seawater. Marine Chemistry, 48(3–4), 215–236.CrossRef
    Govindjee. (1995). Sixty-three years since Kautsky: chlorophyll a fluorescence. Australian Journal of Plant Physiology, 22, 131–160.CrossRef
    Guillard, R. R. L., & Ryther, J. H. (1962). Studies on marine planktonic diatoms, I. Cyclotella nana Hustedt and Detonula confervaceae (Cleve) Gran. Canadian Journal of Microbiology, 8(2), 229–239.CrossRef
    Hannan, P. J., & Patouillet, C. (1972). Effect of mercury on algal growth rates. Biotechnology and Bioengineering, 14, 93–101.CrossRef
    Horvatić, J., & Peršić, V. (2007). The Effect of Ni2+, Co2+, Zn2+, Cd2+ and Hg2+ on the growth rate of marine diatom Phaeodactylum tricornutum Bohlin: microplate growth inhibition test. Bulletin of Environmental Contamination and Toxicology, 79, 494–498.CrossRef
    Irmer, G. (1985). Zum einfluß der apparatefunktion auf die bestimmung von streuquerschnitten und lebensdauern aus optischen phononenspektren. Experimentelle Technik der Physik, 33, 501–506.
    Jakimska, A., Konieczka, P., Skóra, K., & Namieśnik, J. (2011). Bioaccumulation of metals in tissues of marine animals, Part I: the role and impact of heavy metals on organisms. Polish Journal of Environmental Studies, 20(5), 1117–1125.
    Kumar, K. S., Dahms, H.-U., Lee, J.-S., Kim, H. C., Lee, W. C., & Shin, K.-H. (2014). Algal photosynthetic responses to toxic metals and herbicides assessed by chlorophyll a fluorescence. Ecotoxicology and Environmental Safety, 104, 51–71.CrossRef
    Küpper, H., Küpper, F., & Spiller, M. (1996). Environmental relevance of heavy metal substituted chlorophylls using the example of water plants. Journal of Experimental Botany, 47(295), 259–266.CrossRef
    Küpper, H., Setlik, I., Spiller, M., Küpper, F. C., & Prasil, O. (2002). Heavy-metal-induced inhibition of photosynthesis: targets of in vivo heavy metal chlorophyll formation. Journal of Phycology, 38, 429–441.CrossRef
    Lavrov, A., Utkin, A. B., Marques da Silva, J., Vilar, R., Santos, N. M., & Alves, B. (2012). Water stress assessment of cork oak leaves and maritime pine needles bases on LIF spectra. Optics and Spectroscopy, 112, 271–279.CrossRef
    Le Faucheur, S., Campbell, P. G. C., Fortin, C., & Slaveykova, V. (2014). Interactions between mercury and phytoplankton: speciation, bioavailability, and internal handling. Environmental Toxicology and Chemistry, 33(6), 1211–1224.CrossRef
    Lichtenthaler, H. K., & Rinderle, U. (1988). The role of chlorophyll fluorescence in the detection of stress conditions in plants. CRC Critical Reviews in Analytical Chemistry, 19, S29–S85.CrossRef
    Lichtenthaler, H. K., Lang, M., Sowinska, M., Heisel, F., & Miehé, J. A. (1996). Detection of vegetation stress via a new high resolution fluorescence imaging system. Journal of Plant Physiology, 148(5), 599–612.CrossRef
    Machado, M. D., & Soares, E. V. (2014). Modification of cell volume and proliferative capacity of Pseudokirchneriella subcapitata cells exposed to metal stress. Aquatic Toxicology, 147, 1–6.CrossRef
    Markina, Z. V., & Aizdaicher, N. A. (2006). Content of photosynthetic pigments, growth, and cell size of microalgae Phaeodactylum tricornutum in the copper-polluted environment. Russian Journal of Plant Physiology, 53(3), 305–309.CrossRef
    Maurya, R., & Gopal, R. (2008). Laser-induced fluorescence ratios of Cajanus cajan L. Under the stress of cadmium and its correlation with pigment content and pigment ratios. Applied Spectroscopy, 62(4), 433–438.CrossRef
    Maurya, R., Prasad, S. M., & Gopal, R. (2008). LIF technique offers the potential for the detection of cadmium-induced alteration in photosynthetic activities of Zea mays L. Journal of Photochemistry and Photobiology C Photochemistry Reviews, 9, 29–35.CrossRef
    Mishra, K. B., & Gopal, R. (2005). Laser induced fluorescence spectra of leaves of wheat seedlings growing under cadmium stress. General and Applied Plant Physiology, 31, 181–196.
    Moreira, E. G., Vassilieff, I., & Vassilieff, V. S. (2001). Developmental lead exposure. Behavioral alterations in the short and long term. Neurotoxicology and Teratology, 23, 489–495.CrossRef
    Nyholm, N., & Källqvist, T. (1989). Methods for growth inhibition toxicity tests with freshwater algae. Environmental Toxicology and Chemistry, 8(8), 689–703.CrossRef
    OECD, Organisation for Economic Co-operation and Development, Freshwater algal and cyanobacteria, growth inhibition test - test guideline 201 (2002). OECD Guidelines for the testing of chemicals, Paris, France, 1(2), 1–25.
    Pan, K., & Wang, W.-X. (2012). Trace metal contamination in estuarine and coastal environments in China. Science of the Total Environment, 421–422, 3–16.CrossRef
    Pandey, J. K., & Gopal, R. (2011). Laser-induced chlorophyll fluorescence and reflectance spectroscopy of cadmium treated Triticum aestivum L. Plants. Spectroscopy: An International Journal, 26(2), 129–139.CrossRef
    Pfϋndel, E. (1998). Estimating the contribution of photosystem I to total leaf chlorophyll fluorescence. Photosynthesis Research, 56, 185–195E.CrossRef
    Reed, R. H., & Gadd, G. M. (1989). Metal tolerance in eukaryotic and prokaryotic algae. In A. J. Shaw (Ed.), Heavy metal tolerance in plants: evolutionary aspects (pp. 105–118). Boca Raton: CRC Press.
    Rogers, S. I., & Greenaway, B. A. (2005). UK perspective on the development of marine ecosystem indicators. Marine Pollution Bulletin, 50, 9–19.CrossRef
    Scarano, G., & Morelli, E. (2003). Properties of phytochelatin-coated CdS nanocrystallites formed in a marine phytoplanktonic alga (Phaeodactylum tricornutum, Bohlin) in response to Cd. Plant Science, 165, 803–810.CrossRef
    Schuerger, A. C., Capelle, G. A., Di Benedetto, J. A., Mao, C., Chi, N., Mark, T., Evans, D., Richards, J. T., Blank, T. A., & Stryjewski, E. C. (2003). Comparison of two hyperspectral imaging and two laser-induced fluorescence instruments for the detection of zinc stress and chlorophyll concentration in bahia grass (Paspalum notatum Flugge.). Remote Sensing of Environment, 84, 572–588.CrossRef
    Smith, C. L., Steele, J. E., Stauber, J. L., Dianne, F., & Jolley, D. F. (2014). Copper-induced changes in intracellular thiols in two marine diatoms: Phaeodactylum tricornutum and Ceratoneis closterium. Aquatic Toxicology, 156, 211–220.CrossRef
    Strickland, J. D. H., & Parsons, T. R. (1968). A practical handbook of seawater analysis. Ottawa: Fisheries Research Board of Canada Bulletin, 167. 311 pp.
    Subhash, N., & Mohanan, C. N. (1997). Curve fit analysis of chlorophyll fluorescence spectra: application to nutrient stress detection in sunflower. Remote Sensing of Environment, 60, 347–356.CrossRef
    Sunda, W. G. (1989). Trace metal interactions with marine phytoplankton. Biological Oceanography, 6(5–6), 411–442.
    Sunda, W. G., & Huntsman, S. A. (1998). Processes regulating cellular metal accumulation and physiological effects: phytoplankton as model systems. Science of the Total Environment, 219(2–3), 165–181.CrossRef
    Thomas, W. H., Hollibaugh, J. T., Seibert, D. L. R., & Wallace, G. T., Jr. (1980). Toxicity of a mixture of ten metals to phytoplankton. Marine Ecology Progress Series, 2, 213–220.CrossRef
    Torres, E., Cid, A., Fidalgo, P., Herrero, C., & Abalde, J. (1997). Long-chain class III metallothioneins as a mechanism of cadmium tolerance in the marine diatom Phaeodactylum tricornutum Bohlin. Aquatic Toxicology, 39, 231–246.CrossRef
    Tortell, P. D., & Price, N. M. (1996). Cadmium toxicity and zinc limitation in centric diatoms of the genus Thalassiosira. Marine Ecology Progress Series, 138, 245–254.CrossRef
    Vieira, S., Utkin, A. B., Lavrov, A., Santos, N. M., Vilar, R., Marques da Silva, J., & Cartaxana, P. (2011). Effects of intertidal microphytobenthos migration on biomass determination via laser-induced fluorescence. Marine Ecology Progress Series, 432, 45–52.CrossRef
    Watanabe, T., Machida, K., Suzuki, H., Kobayashi, M., & Honda, K. (1985). Photoelectrochemistry of metallochlorophylls. Coordination Chemistry Reviews, 64, 207–224.CrossRef
    Wollman, F. A. (2001). State transitions reveal the dynamics and flexibility of the photosynthetic apparatus. EMBO Journal, 20(14), 3623–3630.CrossRef
    Zhang, H., & Davison, W. (1995). Performance characteristics of diffusion gradients in thin-film for the in situ measurement of trace-metalin aqueous solution. Analytical Chemistry, 67, 3391–3400.CrossRef
    Zhang, H., & Davison, W. (1999). Diffusional characteristics of hydrogels used in DGT and DET techniques. Analytica Chimica Acta, 398, 329–340.CrossRef
  • 作者单位:Maria Teresa Cabrita (1)
    Carla Gameiro (2)
    Andrei B. Utkin (3) (4)
    Bernardo Duarte (2)
    Isabel Caçador (2)
    Paulo Cartaxana (5)

    1. Instituto Português do Mar e da Atmosfera (IPMA), Av. de Brasília, 1449-006, Lisbon, Portugal
    2. Centro de Ciências do Mar e Ambiente (MARE), Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal
    3. INOV-INESC, Rua Alves Redol 9, 1000-029, Lisboa, Portugal
    4. ICEMS, IST, Universidade Técnica de Lisboa, Av. Rovisco Pais 1, 1049-001, Lisbon, Portugal
    5. Marine Biological Section, Department of Biology, University of Copenhagen, Strandpromenaden 5, 3000, Helsingør, Denmark
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Environment
    Monitoring, Environmental Analysis and Environmental Ecotoxicology
    Ecology
    Atmospheric Protection, Air Quality Control and Air Pollution
    Environmental Management
  • 出版者:Springer Netherlands
  • ISSN:1573-2959
文摘
This work reports changes on cell number, growth rate, trace element content, chlorophyll a (Chl a) and carotenoid concentrations, and laser-induced fluorescence (LIF) spectra of Phaeodactylum tricornutum exposed to Co, Ni, Cu, Zn, Cd, Hg, Pb, and a mixture of all elements combined (Mix). The total levels of trace elements associated with the cells were significantly higher in the exposed than in control ones. Concomitantly, specific cell growth was significantly lower in exposed P. tricornutum, suggesting that trace elements affected the microalgae physiology. The LIF emission spectra showed two typical emission bands in red (683–698 nm) and far-red (725–730 nm) regions. Deviations in LIF spectra and changes in F685/F735 ratio were investigated as indicators of trace element-induced changes. Fluorescence intensity emitted by exposed microalgae decreased in far-red region when compared to control cells, suggesting Chl a damage and impairment of pigment biosynthesis pathways by trace elements, confirmed by Chl a and carotenoid concentration decrease. Significant increase in F685/F735 ratio was detected for all elements except Zn and more accentuated for Co, Hg, and Mix. Significant deviations in wavelength emission maxima in red region were also more significant (between 8 and 13 nm) for Co, Hg, and Mix. Growth changes agreed with deviations in LIF spectra and F685/F735 ratio, supporting their applicability as indicators. This study clearly shows F685/F735 ratio and the deviations in wavelength emission maxima as adequate trace element stress indicators and P. tricornutum as a promising biomonitor model species. LIF-based techniques can be used as time-saving, highly sensitive, and effective alternative tool for the detection of trace element stress, with potential for remote sensing and trace element contamination screening in marine coastal areas.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700