Single molecule DNA detection with an atomic vapor notch filter
详细信息    查看全文
  • 作者:Denis Uhland ; Torsten Rendler ; Matthias Widmann ; Sang-Yun Lee…
  • 关键词:DNA detection ; fluorescence microscopy ; single molecules ; atomic filtering ; sodium spectroscopy
  • 刊名:EPJ Quantum Technology
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:2
  • 期:1
  • 全文大小:1802KB
  • 参考文献:1. Hirschfeld T. Optical microscopic observation of single small molecules. Appl Opt. 1976;15(12):2965-6. doi:10.鈥?364/鈥婣O.鈥?5.鈥?02965 . CrossRef ADS
    2. Moerner W, Kador L. Optical detection and spectroscopy of single molecules in a solid. Phys Rev Lett. 1989;62(21):2535-8. doi:10.鈥?103/鈥婸hysRevLett.鈥?2.鈥?535 . CrossRef ADS
    3. Orrit M, Bernard J. Single pentacene molecules detected by fluorescence excitation in a p-terphenyl crystal. Phys Rev Lett. 1990;65:2716-9. doi:10.鈥?103/鈥婸hysRevLett.鈥?5.鈥?716 . CrossRef ADS
    4. Hell SW, Stelzer EHK, Lindek S, Cremer C. Confocal microscopy with an increased detection aperture: type-B 4Pi confocal microscopy. Opt Lett. 1994;19:222-4. doi:10.鈥?364/鈥婳L.鈥?9.鈥?00222 . CrossRef ADS
    5. Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF. Imaging intracellular fluorescent proteins at nanometer resolution. Science. 2006;313(5793):1642-5. doi:10.鈥?126/鈥媠cience.鈥?127344 . CrossRef ADS
    6. Rust MJ, Bates M, Zhuang X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (storm). Nat Methods. 2006;3(10):793-6. doi:10.鈥?038/鈥媙meth929 . CrossRef
    7. Schafer D, Gelles J, Sheetz M, Landick R. Transcription by single molecules of RNA polymerase observed by light microscopy. Nature. 1991;352(6334):444-8. doi:10.鈥?038/鈥?52444a0 . CrossRef ADS
    8. Nie S, Chiu D, Zare R. Probing individual molecules with confocal fluorescence microscopy. Science. 1994;266(5187):1018-21. doi:10.鈥?126/鈥媠cience.鈥?973650 . CrossRef ADS
    9. Nie S, Zare RN. Optical detection of single molecules. Annu Rev Biophys Biomol Struct. 1997;26(1):567-96. doi:10.鈥?146/鈥媋nnurev.鈥媌iophys.鈥?6.鈥?.鈥?67 . CrossRef
    10. Weiss S. Fluorescence spectroscopy of single biomolecules. Science. 1999;283(5408):1676-83. doi:10.鈥?126/鈥媠cience.鈥?83.鈥?408.鈥?676 . CrossRef ADS
    11. Gordon MP, Ha T, Selvin PR. Single-molecule high-resolution imaging with photobleaching. Proc Natl Acad Sci USA. 2004;101(17):6462-5. doi:10.鈥?073/鈥媝nas.鈥?401638101 . CrossRef ADS
    12. Jelezko F, Tietz C, Gruber A, Popa I, Nizovtsev A, Kilin S, Wrachtrup J. Spectroscopy of single N-V centers in diamond. Single Mol. 2001;2:255-60. doi:10.鈥?002/鈥?438-5171(200112)2:鈥?<255:鈥?鈥婣ID-SIMO255>3.鈥?.鈥婥O;2-D . CrossRef ADS
    13. Vlasov II, Shiryaev AA, Rendler T, Steinert S, Lee S-Y, Antonov D, Voros M, Jelezko F, Fisenko AV, Semjonova LF, Biskupek J, Kaiser U, Lebedev OI, Sildos I, Hemmer PR, Konov VI, Gali A, Wrachtrup J. Molecular-sized fluorescent nanodiamonds. Nat Nanotechnol. 2014;9(1):54-8. doi:10.鈥?038/鈥媙nano.鈥?013.鈥?55 . CrossRef ADS
    14. Biju V, Itoh T, Anas A, Sujith A, Ishikawa M. Semiconductor quantum dots and metal nanoparticles: syntheses, optical properties, and biological applications. Anal Bioanal Chem. 2008;391(7):2469-95. doi:10.鈥?007/鈥媠00216-008-2185-7 . CrossRef
    15. Sandoghdar V, Klotzsch E, Jacobsen V, Renn A, Hakanson U, Agio M, Gerhardt I, Seelig J, Wrigge G. Optical detection of very small nonfluorescent nanoparticles. Chimia. 2006;60:761-4. doi:10.鈥?533/鈥媍himia.鈥?006.鈥?61 . CrossRef
    16. Gerhardt I, Wrigge G, Hwang J, Zumofen G, Sandoghdar V. Coherent nonlinear single molecule microscopy. Phys Rev A. 2010;82:063823. doi:10.鈥?103/鈥婸hysRevA.鈥?2.鈥?63823 . http://鈥媕ournals.鈥媋ps.鈥媜rg/鈥媝ra/鈥媋bstract/鈥?0.鈥?103/鈥婸hysRevA.鈥?2.鈥?63823 . CrossRef ADS
    17. Lee KG, Chen WX, Eghlidi H, Kukura P, Lettow R, Renn A, Sandoghdar V, G枚tzinger S. A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency. Nat Photonics. 2011;5(3):166-9. doi:10.鈥?038/鈥媙photon.鈥?010.鈥?12 . CrossRef ADS
    18. Jamali M, Gerhardt I, Rezai M, Frenner K, Fedder H, Wrachtrup J. Microscopic diamond solid-immersion-lenses fabricated around single defect centers by focused ion beam milling. Rev Sci Instrum. 2014;85(12). doi:10.鈥?063/鈥?.鈥?902818 .
    19. Domenico GD, Weis A. Spectra of the D-lines of alkali vapors. Wolfram Demonstrations Project. 2011. http://鈥媎emonstrations.鈥媤olfram.鈥媍om/鈥婼pectraOfTheDLin鈥媏sOfAlkaliVapors鈥?鈥?/span> .
    20. Heifetz A, Agarwal A, Cardoso GC, Gopal V, Kumar P, Shahriar MS. Super efficient absorption filter for quantum memory using atomic ensembles in a vapor. Opt Commun. 2004;232(1-6):289-93. doi:10.鈥?016/鈥媕.鈥媜ptcom.鈥?004.鈥?1.鈥?06 . CrossRef ADS
    21. Weller L, Kleinbach KS, Zentile MA, Knappe S, Adams CS, Hughes IG. Absolute absorption and dispersion of a rubidium vapour in the hyperfine Paschen-Back regime. J Phys B, At Mol Opt Phys. 2012;45(21):215005. doi:10.鈥?088/鈥?953-4075/鈥?5/鈥?1/鈥?15005 . CrossRef ADS
    22. Camparo J. The rubidium atomic clock and basic research. Phys Today. 2007;60(11):33-9. doi:10.鈥?063/鈥?.鈥?812121 . CrossRef
    23. Pelletier MJ. Ultraviolet Raman spectroscopy using an atomic vapor filter and incoherent excitation. Appl Spectrosc. 1992;46(3):395-400. doi:10.鈥?366/鈥?003702924125320鈥?/span> . CrossRef ADS
    24. Chen H, White MA, Krueger DA, She CY. Daytime mesopause temperature measurements with a sodium-vapor dispersive Faraday filter in a lidar receiver. Opt Lett. 1996;21(15):1093-5. doi:10.鈥?364/鈥婳L.鈥?1.鈥?01093 . CrossRef ADS
    25. Junxiong T, Qingji W, Yimin L, Liang Z, Jianhua G, Minghao D, Jiankun K, Lemin Z. Experimental study of a model digital space optical communication system with new quantum devices. Appl Opt. 1995;34(15):2619-22. doi:10.鈥?364/鈥婣O.鈥?4.鈥?02619 . CrossRef ADS
    26. Lin J, Li Y-Q. Ultralow frequency Stokes and anti-Stokes Raman spectroscopy of single living cells and microparticles using a hot rubidium vapor filter. Opt Lett. 2014;39(1):108-10. doi:10.鈥?364/鈥婳L.鈥?9.鈥?00108 . CrossRef ADS
    27. Minsky M. Microscopy apparatus. 1961. http://鈥媤orldwide.鈥媏spacenet.鈥媍om/鈥媝ublicationDetai鈥媗s/鈥媌iblio?鈥婥C=鈥婾S&鈥婲R=鈥?013467&鈥婯C=鈥?鈥婩T=鈥婨&鈥媗ocale=鈥媏n_鈥婨P .
    28. Singer E. A microscope for observation of fluorescence in living tissues. Science. 1932;75(1941):289-91. doi:10.鈥?126/鈥媠cience.鈥?5.鈥?941.鈥?89-a . CrossRef ADS
    29. Siyushev P, Stein G, Wrachtrup J, Gerhardt I. Molecular photons interfaced with alkali atoms. Nature. 2014;509(7498):66-70. doi:10.鈥?038/鈥媙ature13191 . CrossRef ADS
    30. Lee Y-H, Maus RG, Smith BW, Winefordner JD. Laser-induced fluorescence detection of a single molecule in a capillary. Anal Chem. 1994;66:4142-9. doi:10.鈥?021/鈥媋c00095a005 . CrossRef
    31. Petelski T, Fattori M, Lamporesi G, Stuhler J, Tino GM. Doppler-free spectroscopy using magnetically induced dichroism of atomic vapor: a new scheme for laser frequency locking. Eur Phys J, D, At Mol Opt Phys. 2003;22(2):279-83. doi:10.鈥?140/鈥媏pjd/鈥媏2002-00238-4 . ADS
    32. Laux L, Schulz G. A sodium-resistant glass cell by coating with caf 2. J Phys E, Sci Instrum. 1980;13(8):823. CrossRef ADS
    33. Sakurai T, Tanaka K, Miyazaki H, Ichimoto K, Sakata A, Wada S. Construction of long-life magneto-optical filters for helioseismology observations. In: Osaki Y, Shibahashi H, editors. Progress of seismology of the sun and stars. Lecture notes in physics vol.聽367. Berlin: Springer; 1990. p. 277-80. doi:10.鈥?007/鈥?-540-53091-6_鈥?2 . CrossRef
    34. Kubin RF, Fletcher AN. Fluorescence quantum yields of some rhodamine dyes. J Lumin. 1983;27(4):455-62. doi:10.鈥?016/鈥?022-2313(82)90045-X . CrossRef
    35. Arbeloa FL, Aguirresacona IU, Arbeloa IL. Influence of the molecular structure and the nature of the solvent on the absorption and fluorescence characteristics of rhodamines. Chem Phys. 1989;130(1-3):371-8. doi:10.鈥?016/鈥?301-0104(89)87066-1 . CrossRef ADS
    36. Widmann M, Lee S-Y, Rendler T, Son NT, Fedder H, Paik S, Yang L-P, Zhao N, Yang S, Booker I, Denisenko A, Jamali M, Momenzadeh SA, Gerhardt I, Ohshima T, Gali A, Janz茅n E, Wrachtrup J. Coherent control of single spins in silicon carbide at room temperature. Nat Mater. 2015;14(2):164-8. doi:10.鈥?038/鈥媙mat4145 . CrossRef ADS
    37. Dick DJ, Shay TM. Ultrahigh-noise rejection optical filter. Opt Lett. 1991;16(11):867-9. doi:10.鈥?364/鈥婳L.鈥?6.鈥?00867 . CrossRef ADS
    38. Kiefer W, L枚w R, Wrachtrup J, Gerhardt I. Na-Faraday rotation filtering: the optimal point. Sci Rep. 2014;4:6552. doi:10.鈥?038/鈥媠rep06552 . CrossRef ADS
  • 作者单位:Denis Uhland (1)
    Torsten Rendler (1)
    Matthias Widmann (1)
    Sang-Yun Lee (1)
    J枚rg Wrachtrup (1) (2)
    Ilja Gerhardt (1) (2)

    1. 3rd Physics Institute, University of Stuttgart and Stuttgart Research Center of Photonic Engineering (SCoPE) and IQST, Pfaffenwaldring 57, Stuttgart, 70569, Germany
    2. Max Planck Institute for Solid State Research, Heisenbergstra脽e 1, Stuttgart, 70569, Germany
  • 刊物类别:Quantum Physics; Quantum Information Technology, Spintronics; Nanotechnology and Microengineering;
  • 刊物主题:Quantum Physics; Quantum Information Technology, Spintronics; Nanotechnology and Microengineering;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:2196-0763
文摘
The detection of single molecules has facilitated many advances in life- and material-science. Commonly the fluorescence of dye molecules is detected, which are attached to a non-fluorescent structure under study. For fluorescence microscopy one desires to maximize the detection efficiency together with an efficient suppression of undesired laser leakage. Here we present the use of the narrow-band filtering properties of hot atomic sodium vapor to selectively filter the excitation light from the red-shifted fluorescence of dye labeled single-stranded DNA molecules. A statistical analysis proves an enhancement in detection efficiency of more than 15% in a confocal and in a wide-field configuration. Keywords DNA detection fluorescence microscopy single molecules atomic filtering sodium spectroscopy

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700