A 3-D cell culture system to study epithelia functions using microcarriers
详细信息    查看全文
文摘
In vitro cell culture models used to study epithelia and epithelial diseases would benefit from the recognition that organs and tissues function in a three-dimensional (3D) environment. This context is necessary for the development of cultures that more realistically resemble in vivo tissues/organs. Our aim was to establish and characterize biologically meaningful 3D models of epithelium. We engineered 3D epithelia cultures using a kidney epithelia cell line (MDCK) and spherical polymer scaffolds. These kidney epithelia were characterized by live microscopy, immunohistochemistry and transmission electron microscopy. Strikingly, the epithelial cells displayed increased physiological relevance; they were extensively polarized and developed a more differentiated phenotype. Using such a growth system allows for direct transmission and fluorescence imaging with few restrictions using wide-field, confocal and Light Sheet Fluorescence Microscopy. We also assessed the wider relevance of this 3D culturing technique with several epithelial cell lines. Finally, we established that these 3D micro-tissues can be used for infection as well as biochemical assays and to study important cellular processes such as epithelial mesenchymal transmission. This new biomimetic model could provide a broadly applicable 3D culture system to study epithelia and epithelia related disorders.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700