Standard fluorescent proteins as dual-modality probes for correlative experiments in an integrated light and electron microscope
详细信息    查看全文
  • 作者:Elisabeth Brama ; Christopher J. Peddie ; Martin L. Jones…
  • 关键词:GFP ; YFP ; Fluorescent protein ; In ; resin fluorescence ; Vacuum ; Integrated light and electron microscopy
  • 刊名:Journal of Chemical Biology
  • 出版年:2015
  • 出版时间:October 2015
  • 年:2015
  • 卷:8
  • 期:4
  • 页码:179-188
  • 全文大小:7,052 KB
  • 参考文献:1.Shimomura O, Johnson FH, Saiga Y (1962) Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan. Aequorea J Cell Comp Physiol 59:223-39CrossRef
    2.Giepmans BN, Adams SR, Ellisman MH, Tsien RY (2006) The fluorescent toolbox for assessing protein location and function. Science (New York, NY) 312:217-24. doi:10.-126/?science.-124618 CrossRef
    3.Ormo M, Cubitt AB, Kallio K, Gross LA, Tsien RY, Remington SJ (1996) Crystal structure of the Aequorea victoria green fluorescent protein. Science (New York, NY) 273:1392-395CrossRef
    4.Shcherbakova DM, Sengupta P, Lippincott-Schwartz J, Verkhusha VV (2014) Photocontrollable fluorescent proteins for superresolution imaging. Annu Rev Biophys 43:303-29. doi:10.-146/?annurev-biophys-051013-022836 CrossRef
    5.Muller-Reichert T, Verkade P (2012) Introduction to correlative light and electron microscopy. Methods Cell Biol 111:xvii–xix. doi:10.-016/?b978-0-12-416026-2.-3001-6 CrossRef
    6.Muller-Reichert T, Verkade P (2014) Preface. Correlative light and electron microscopy II. Methods Cell Biol 124:xvii–xviii. doi:10.-016/?b978-0-12-801075-4.-9983-3 CrossRef
    7.Bell K, Mitchell S, Paultre D, Posch M, Oparka K (2013) Correlative imaging of fluorescent proteins in resin-embedded plant material. Plant Physiol 161:1595-603. doi:10.-104/?pp.-112.-12365 CrossRef
    8.Kukulski W, Schorb M, Welsch S, Picco A, Kaksonen M, Briggs JA (2011) Correlated fluorescence and 3D electron microscopy with high sensitivity and spatial precision. J Cell Biol 192:111-19. doi:10.-083/?jcb.-01009037 CrossRef
    9.Nixon SJ, Webb RI, Floetenmeyer M, Schieber N, Lo HP, Parton RG (2009) A single method for cryofixation and correlative light, electron microscopy and tomography of zebrafish embryos. Traffic (Copenhagen, Denmark) 10:131-36. doi:10.-111/?j.-600-0854.-008.-0859.?x CrossRef
    10.Peddie CJ et al (2014) Correlative and integrated light and electron microscopy of in-resin GFP fluorescence, used to localise diacylglycerol in mammalian cells. Ultramicroscopy. doi:10.-016/?j.?ultramic.-014.-2.-01
    11.Watanabe S et al (2011) Protein localization in electron micrographs using fluorescence nanoscopy. Nat Methods 8:80-4. doi:10.-038/?nmeth.-537 CrossRef
    12.McDonald KL, Morphew M, Verkade P, Muller-Reichert T (2007) Recent advances in high-pressure freezing: equipment- and specimen-loading methods. Methods Mol Biol (Clifton, NJ) 369:143-73CrossRef
    13.McDonald KL, Webb RI (2011) Freeze substitution in 3 hours or less. J Microsc 243:227-33. doi:10.-111/?j.-365-2818.-011.-3526.?x CrossRef
    14.Peddie CJ, Liv N, Hoogenboom JP, Collinson LM (2014) Integrated Light and Scanning Electron Microscopy of GFP-Expressing. Cell Method Cell Biol 124:363-89. doi:10.-016/?b978-0-12-801075-4.-0017-3 CrossRef
    15.Liv N et al (2013) Simultaneous correlative scanning electron and high-NA fluorescence microscopy. PLoS One 8:e55707. doi:10.-371/?journal.?pone.-055707 CrossRef
    16.Nickels JD et al (2012) Dynamics of Protein and its Hydration Water: Neutron Scattering Studies on Fully Deuterated GFP. Biophys J 103:1566-575CrossRef
    17.Arakawa Y, Cordeiro JV, Schleich S, Newsome TP, Way M (2007) The release of vaccinia virus from infected cells requires RhoA-mDia modulation of cortical actin. Cell Host Microbe 1:227-40. doi:10.-016/?j.?chom.-007.-4.-06 CrossRef
    18.Domart MC et al (2012) Acute manipulation of diacylglycerol reveals roles in nuclear envelope assembly & endoplasmic reticulum morphology. PLoS One 7:e51150. doi:10.-371/?journal.?pone.-051150 CrossRef
    19.Frankevich V, Barylyuk K, Chingin K, Nieckarz R, Zenobi R (2013) Native biomolecules in the gas phase? The case of green fluorescent protein Chemphyschem. Eur J Chem Phys Phys Chem 14:929-35. doi:10.-002/?cphc.-01200959
    20.Zimmer M (2002) Green fluorescent protein (GFP): applications, structure, and related photophysical behavior. Chem Rev 102:759-81CrossRef
    21.Bourgeois D, Regis-Faro A, Adam V (2012) Photoactivated structural dynamics of fluorescent proteins. Biochem Soc Trans 40:531-38. doi:10.-042/?bst20120002 CrossRef
    22.Brejc K, Sixma TK, Kitts PA, Kain SR, Tsien RY, Ormo M, Remington SJ (1997) Structural basis for dual excitation and photoisomerization of the Aequorea victoria green fluorescent protein. Proc Natl Acad Sci U S A 94:2306-311CrossRef
    23.Lammich L, Petersen MA, Nielsen MB, Andersen LH (2007) The gas-phase absorption spectrum of a neutral GFP model chromophore. Biophys J 92:201-07. doi:10.-529/?biophysj.-06.-93674 CrossRef
    24.Petrone A, Caruso P, Tenuta S, Rega N (2013) On the optical absorption of the anionic GFP chromophore in vacuum, solution, and protein. Phys Chem Chem Phys: PCCP 15:20536-0544. doi:10.-039/?c3cp52820k CrossRef
    25.Rajput J et al (2009) Photoabsorption studies of neutral green fluorescent protein model chromophores in vacuo. Phys Chem Chem Phy
  • 作者单位:Elisabeth Brama (1)
    Christopher J. Peddie (1)
    Martin L. Jones (1)
    Marie-Charlotte Domart (1)
    Xenia Snetkov (2)
    Michael Way (2)
    Banafshe Larijani (3)
    Lucy M. Collinson (1)

    1. Electron Microscopy, The Francis Crick Institute, Lincoln’s Inn Fields Laboratory, London, WC2A 3LY, UK
    2. Cellular Signalling and Cytoskeletal Function, The Francis Crick Institute, Lincoln’s Inn Fields Laboratory, London, WC2A 3LY, UK
    3. Cell Biophysics Laboratory, Ikerbasque, Basque Foundation for Science and Unidad de Biofisica (CSIC-UPV/EHU), Barrio de Sarriena, 48940, Leioa, Spain
  • 刊物主题:Physical Chemistry; Biophysics and Biological Physics; Cell Biology; Pharmacology/Toxicology; Biochemistry, general;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1864-6166
文摘
Integrated light and electron microscopes (ILEMs) will enable a new generation of high-precision correlative imaging experiments. To fully exploit these systems, samples must contain dual-modality probes that highlight the position of macromolecules in the context of cell ultrastructure. We demonstrate that the fluorescent proteins (FPs) GFP (green), YFP (yellow) and mCherry can be used as dual-modality probes for ILEM when preserved using the in-resin fluorescence (IRF) technique, which delivers stable active fluorophores in lightly stained, resin-embedded cells and tissues. However, we found that vacuum pressure in the ILEM affects the photophysics of FPs in IRF sections. Here, we show that reducing the vacuum pressure reduces fluorescence intensity of GFP and YFP, which is a consequence of water extraction from the sample and is reversible on re-creation of partial pressure with water vapour (but not oxygen or nitrogen gas). We also find that, although fluorescence intensity is reduced at a partial pressure of 200 Pa (created using water vapour), the FP intensity is remarkably stable over time in vacuum and resistant to photobleaching during imaging. We are thus able to define imaging strategies for standard FPs acting as dual-modality probes in a single ‘multi-colour-integrated microscope system. Keywords GFP YFP Fluorescent protein In-resin fluorescence Vacuum Integrated light and electron microscopy

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700