Phosphorus–nitrogen compounds
详细信息    查看全文
  • 作者:Hüseyin Akbaş ; Aytuğ Okumuş ; Ahmet Karadağ…
  • 关键词:Phosphazene salts ; Thermal analysis ; Cytotoxic activity ; DNA binding ; Antimicrobial activity
  • 刊名:Journal of Thermal Analysis and Calorimetry
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:123
  • 期:2
  • 页码:1627-1641
  • 全文大小:1,006 KB
  • 参考文献:1.Allcock HR. Chemistry and application of polyphosphazenes. Hoboken: Wiley; 2003.
    2.Gleria M, De Jaeger R. Applicative aspects of cyclophosphazenes. New York: Nova Science Publishers; 2004.
    3.Allen CW. Regio- and stereochemical control in substitution reactions of cyclophosphazenes. Chem Rev. 1991;91:119–35.CrossRef
    4.Okumuş A, Bilge S, Kılıç Z, Öztürk A, Hökelek T, Yılmaz F. Phosphorus–nitrogen compounds. Part 20: fully substituted spiro-cyclotriphosphazenic lariat (PNP-pivot) ether derivatives. Spectrochim Acta Part A Mol Biomol Spectrosc. 2010;76(3–4):401–9.CrossRef
    5.Allcock HR. Recent advances in phosphazene (phosphonitrilic) chemistry. Chem Rev. 1972;72(4):315–56.CrossRef
    6.Alkubaisia AH, Deutscha WF, Hursthouseb MB, Parkesa HG, Shaw LY, Shaw RA. The reactions of N3P3Cl6 and related compounds with difunctional reagents comparisons and contrasts. Phosphorous Sulfur Relat Elem. 1986;28(1–2):229–37.CrossRef
    7.Ledger J, Boomishankar R, Steiner A. Aqueous chemistry of chlorocyclophosphazenes: phosphates PO2}, phosphamides {P(O)NHR}, and the first phosphites {PHO and pyrophosphates (PO)2O of these heterocycles. Inorg Chem. 2010;49:3896–904.CrossRef
    8.Benson MA, Zacchini S, Boomishankar R, Chan Y, Steiner A. Alkylation and acylation of cyclotriphosphazenes. Inorg Chem. 2007;46(17):7097–108.CrossRef
    9.Mani NV, Wagner AJ. The crystal structure of compounds with (N-P)n rings VIII. Dichlorotetrakisisopropylaminocyclotriphosphazatriene hydrochloride N3P3Cl2(NHPri)4.HCl. Acta Cryst. 1971;B27:51–8.CrossRef
    10.Zhang Y, Tham FS, Reed CA. Phosphazene cations. Inorg Chem. 2006;45(26):10446–8.CrossRef
    11.Zhang Y, Hyunh K, Manners I, Reed CA. Ambient temperature ring-opening polymerisation (ROP) of cyclic chlorophosphazene trimer [N3P3Cl6] catalyzed by silylium ions. Chem Commun. 2008;4:494–6.CrossRef
    12.Reed CA, Kim KC, Stoyanov ES, Stasko D, Tham FS, Mueller LJ, Boyd PDW. Isolating benzenium ion salts. J Am Chem Soc. 2003;125(7):1796–804.CrossRef
    13.Nobori T, Hayashi T, Shibahara A, Saeki T, Yamasaki S, Ohkubo K. Development of novel molecular catalysts “phosphazene catalysts” for commercial production of highly advanced polypropylene glycols. Catal Surv Asia. 2010;14:164–7.CrossRef
    14.Furuyama R, Fujita T, Funaki SF, Nobori T, Nagata T, Fujiwara K. New high-performance catalysts developed at mitsui chemicals for polyolefins and organic synthesis. Catal Surv Asia. 2004;8:61–71.CrossRef
    15.Alberti M, Mareček A, Žák Z, Pastera P. Reaction of [P3N3Cl4(NH2)2] with [HN(POCl2)2]; the crystal structure of the phosphazenium salt [P3N3HCl4(NH2)2]+[N(POCl2)2]−. Z Anorg Allg Chem. 1995;621:1771–4.CrossRef
    16.Görgülü AO, Koran K, Özen F, Tekin S, Sandal S. Synthesis, structural characterization and anti-carcinogenic activity of new cyclotriphosphazenes containing dioxybiphenyl and chalcone groups. J Mol Struct. 2015;1087:1–10.CrossRef
    17.Machakanur SS, Patil BR, Naik GN, Bakale RP, Bligh SWA, Gudasi KB. Synthesis, characterization and antiproliferative activity of hexa arm star shaped thiosemicarbazones derived from cyclotriphosphazene core. Inorg Chim Acta. 2014;421:459–64.CrossRef
    18.Porwolik-Czomperlik I, Siwy M, Şek D, Kaczmarczyk B, Nasulewicz A, Jaroszewicz I, Pelczynska M, Opolski A. Synthesis and in vitro cytostatic activity of some new 1,3-(oxytetraethylenoxy)-cyclotrophosphazatriene derivatives. Acta Pol Pharm. 2004;61(4):267–72.
    19.Tümer Y, Asmafiliz N, Kılıç Z, Hökelek T, Koç LY, Açık L, Yola ML, Solak AO, Öner Y, Dündar D, Yavuz M. Phosphorus-nitrogen compounds: part 28. Syntheses, structural characterizations, antimicrobial and cytotoxic activities, and DNA interactions of new phosphazenes bearing vanillinato and pendant ferrocenyl groups. J Mol Struct. 2013;1049:112–24.CrossRef
    20.Brandt K, Bartczak TJ, Kruszynski R, Porwolik-Czomperlik I. AIDS-related lymphoma screen results and molecular structure determination of a new crown ether bearing aziridinylcyclophosphazene, potentially capable of ion-regulated DNA cleavage action. Inorg Chim Acta. 2001;322:138–44.CrossRef
    21.Elmas G, Okumuş A, Koç LY, Soltanzade H, Kılıç Z, Hökelek T, Dal H, Açık L, Üstündağ Z, Dündar D, Yavuz M. Phosphorus-nitrogen compounds. Part 29. Syntheses, crystal structures, spectroscopic and stereogenic properties, electrochemical investigations, antituberculosis, antimicrobial and cytotoxic activities and DNA interactions of ansa-spiro-ansa cyclotetraphosphazenes. Eur J Med Chem. 2014;87:662–76.CrossRef
    22.Yıldırım T, Bilgin K, Çiftçi Y, Eçik ET, Şenkuytu E, Uludağ Y, Tomak L, Kılıç A. Synthesis, cytotoxicity and apoptosis of cyclotriphosphazene compounds as anticancer. Eur J Med Chem. 2012;52:213–20.CrossRef
    23.Akbaş H, Okumuş A, Kılıç Z, Hökelek T, Süzen Y, Koç LY, Açık L, Çelik ZB. Phosphorus-nitrogen compounds part 27. Syntheses, structural characterizations, antimicrobial and cytotoxic activities, and DNA interactions of new phosphazenes bearing secondary amino and pendant (4-fluorobenzyl)spiro groups. Eur J Med Chem. 2013;70:294–307.CrossRef
    24.Bruker program 1D WIN-NMR (release 6.0) and 2D WIN-NMR (release 6.1).
    25.Bruker, SADABS, Bruker AXS Inc, Madison; 2005.
    26.Sheldrick GM. SHELXS-97, SHELXL-97. Göttingen: University of Göttingen; 1997.
    27.Sheldrick GM. A short history of SHELX. Acta Crystallogr Sect A. 2008;64:112–22.CrossRef
    28.Elmas G, Okumuş A, Kılıç Z, Hökelek T, Açık L, Dal H, Ramazanoğlu N, Koç LY. Phosphorus–nitrogen compounds. Part 24. Syntheses, crystal structures, spectroscopic and stereogenic properties, biological activities, and DNA interactions of novel spiro-ansa-spiro- and ansaspiro-ansa-cyclotetraphosphazenes. Inorg Chem. 2012;51:12841–56.CrossRef
    29.Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing sixteenth informational supplement. CLSI document M100eS16: Pennsylvania; 2006.
    30.Okumuş A, Kılıç Z, Hökelek T, Dal H, Açık L, Öner Y, Koç LY. Phosphorus–nitrogen compounds part 22. Syntheses, structural investigations, biological activities and DNA interactions of new mono and bis (4-fluorobenzyl)spirocyclophosphazenes. Polyhedron. 2011;30(17):2896–907.CrossRef
    31.Cheng H, Huq F, Beale P, Fisher K. Synthesis, characterisation, activities, cell uptake and DNA binding of a trinuclear complex: [{trans-PtCl(NH3)}2μ-{trans-Pd(NH3)(2-hydroxypyridine)-(H2N(CH2)6NH2)2]Cl4. Eur J Med Chem. 2006;41:896–903.CrossRef
    32.Koçak SB, Koçoğlu S, Okumuş A, Kılıç Z, Öztürk A, Hökelek T, Öner Y, Açık L. Syntheses, spectroscopic properties, crystal structures, biological activities, and DNA interactions of heterocyclic amine substituted spiro-ansa-spiro- and spiro-bino-spiro-phosphazenes. Inorg Chim Acta. 2013;406:160–70.CrossRef
    33.Uslu A, Yeşilot S. Chiral configurations in cyclophosphazene chemistry. Coord Chem Rev. 2015;291:28–67.CrossRef
    34.Vicente V, Fruchier A, Cristau J. Determination of 31P coupling constants in cyclotriphosphazenes and their influence on 1H and 13C NMR spectra of phosphorus substituents. Magn Reson Chem. 2003;41:183–92.CrossRef
    35.Carriedo GA, Alonso FG, Gonzalez PA, Menendez JR. Infrared and Raman spectra of the phosphazene high polymer [NP(O2C12H8)]n. J Raman Spectrosc. 1998;29(4):327–30.CrossRef
    36.Ramalingam S, Periandyb S, Elanchezhianc B, Mohand S. FT-IR and FT-Raman spectra and vibrational investigation of 4-chloro-2-fluoro toluene using ab initio HF and DFT (B3LYP/B3PW91) calculations. Spectrochim Acta Part A. 2011;78:429–36.CrossRef
    37.Cafiero L, Fabbri D, Trinca E, Tuffi R, Ciprioti SV. Thermal and spectroscopic (TG/DSC–FTIR) characterization of mixed plastics for materials and energy recovery under pyrolytic conditions. J Therm Anal Calorim. 2015;121:1111–9.CrossRef
    38.Lejeune N, Dez I, Jaffrès PA, Lohier JF, Madec PJ, Oliveira Santos JS. Synthesis, crystal structure and thermal properties of phosphorylated cyclotriphosphazenes. Eur J Inorg Chem. 2008;1:138–43.CrossRef
    39.Ardıç Alidağı H, Coşut B, Kılıç A, Yeşilot S. Synthesis and spectral properties of a hexameric pyrene-fluorene chromophore based on cyclotriphosphazene. Polyhedron. 2014;81:436–41.CrossRef
    40.Silva Nykänen VP, Härkönen O, Nykänen A, Hiekkataipale P, Ruokolainen J, Ikkala O. An efficient and stable star-shaped plasticizer for starch: cyclic phosphazene with hydrogen bonding aminoethoxy ethanol side chains. Green Chem. 2014;16:4339–50.CrossRef
    41.Käbisch B, Fehrenbacher U, Kroke E. Hexamethoxycyclotriphosphazene as a flame retardant for polyurethane foams. Fire Mater. 2014;38:462–73.CrossRef
    42.Pan M, Zhang C, Zhai X, Qu L, Mu J. Effect of hexaphenoxycyclotriphosphazene combined with octapropylglycidylether polyhedral oligomeric silsesquioxane on thermal stability and flame retardancy of epoxy resin. High Perform Polym. 2014;26(7):744–52.CrossRef
    43.Cremer D, Pople JA. A general definition of ring puckering coordinates. J Am Chem Soc. 1975;97(6):1354–8.CrossRef
    44.Chaplin AB, Harrison JA, Dyson PJ. Revisiting the electronic structure of phosphazenes. J Inorg Chem. 2005;44:8407–17.CrossRef
    45.Farrugia LJ. ORTEP-3 for windows—a version of ORTEP-III with a graphical user interface (GUI). J Appl Crystallogr. 1997;30:565–6.CrossRef
    46.Asmafiliz N, Kılıç Z, Öztürk A, Süzen Y, Hökelek T, Açık L, Çelik ZB, Koç LY, Yola ML, Üstündağ Z. Phosphorus-Nitrogen Compounds: part 25. Syntheses, spectroscopic, structural and electrochemical investigations, antimicrobial activities, and DNA interactions of ferrocenyldiaminocyclotriphosphazenes. Phosphorus, Sulfur Silicon Relat Elem. 2013;18(12):1723–42.CrossRef
    47.Legin AA, Jakupec MA, Bokach NA, Tyan MR, Kukushkin VY, Keppler BK. Guanidine platinum(II) complexes: synthesis, in vitro antitumor activity, and DNA interactions. J Inorg Biochem. 2014;133:33–9.CrossRef
    48.Green MR, Sambrook J. Molecular cloning. New York: Cold Spring Harbor Laboratory Press; 2012.
  • 作者单位:Hüseyin Akbaş (1)
    Aytuğ Okumuş (2)
    Ahmet Karadağ (1)
    Zeynel Kılıç (2)
    Tuncer Hökelek (3)
    L. Yasemin Koç (4)
    Leyla Açık (5)
    Betül Aydın (5)
    Mustafa Türk (6)

    1. Department of Chemistry, Gaziosmanpaşa University, 60150, Taşlıçiftlik Kampüsü-Tokat, Turkey
    2. Department of Chemistry, Ankara University, 06100, Tandoğan-Ankara, Turkey
    3. Department of Physics, Hacettepe University, 06800, Beytepe-Ankara, Turkey
    4. The Turkish Sugar Authority, 06510, Çankaya-Ankara, Turkey
    5. Department of Biology, Gazi University, 06500, Teknikokullar-Ankara, Turkey
    6. Department of Bioenginering, Kırıkkale University, Kırıkkale, Turkey
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Sciences
    Polymer Sciences
    Physical Chemistry
    Inorganic Chemistry
    Measurement Science and Instrumentation
  • 出版者:Akad茅miai Kiad贸, co-published with Springer Science+Business Media B.V., Formerly Kluwer Academic
  • ISSN:1572-8943
文摘
The salicylic acid salts of fully substituted mono(4-fluorobenzyl)spirocyclotriphosphazenes (10–15) were prepared. The structures of these phosphazenium salts (10a–15a) were determined by elemental analyses, FTIR and 1H, 13C{1H}, 31P{1H} NMR techniques. The crystal structure of 14a was verified by X-ray diffraction analysis. The thermal properties of the salts were investigated using TG/DTA and DSC instruments. The results obtained from DSC indicated that the melting temperatures and latent heats of the compounds were in the ranges of 107.76–143.04 °C and 41.64–69.73 J g−1, respectively. The thermal stabilities of the phosphazenium salts (10a–15a) are found to be different, but they have a similar decomposition mechanism. The compounds 14a and 15a exhibit noticeable cytotoxic activity against DLD-1 cancer cells, and they seem to be good candidates for being anticancer agents. All of the compounds have an antimicrobial effect on bacterial and yeast strains within the ranges of 312–625 µM (bacterial strains) and 19.5–312 µM (yeast strains). It is found that compounds 13a–15a were most effective against yeast strains. Moreover, interactions between the salts and pBR322 plasmid DNA show that 14a and 15a cleave the DNA and decrease the intensity of form I. BamHI and HindIII digestion results demonstrate that the compounds are not bound with G/G and A/A nucleotides, respectively. Keywords Phosphazene salts Thermal analysis Cytotoxic activity DNA binding Antimicrobial activity

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700