ABC transporters coupled with the elevated ergosterol contents contribute to the azole resistance and amphotericin B susceptibility
详细信息    查看全文
  • 作者:Biao Ren (1) (2)
    Huan-Qin Dai (1)
    Gang Pei (1) (2) (3)
    Yao-Jun Tong (1) (2)
    Ying Zhuo (1)
    Na Yang (1) (2)
    Meng-Yi Su (1)
    Pei Huang (1) (2)
    Yu-Zhuo Yang (1)
    Li-Xin Zhang (1)
  • 关键词:Drug resistance ; Amphotericin B ; Ergosterol ; Azoles ; Fluphenazine
  • 刊名:Applied Microbiology and Biotechnology
  • 出版年:2014
  • 出版时间:March 2014
  • 年:2014
  • 卷:98
  • 期:6
  • 页码:2609-2616
  • 全文大小:369 KB
  • 参考文献:1. Baginski M, Sternal K, Czub J, Borowski E (2005) Molecular modelling of membrane activity of amphotericin B, a polyene macrolide antifungal antibiotic. Acta Biochim Pol 52:1-
    2. Ben-Yaacov R, Knoller S, Caldwell GA, Becker JM, Koltin Y (1994) / Candida albicans gene encoding resistance to benomyl and methotrexate is a multidrug resistance gene. Antimicrob Agents Chemother 38(4):648-52
    3. Bossche HV, Willemsens G, Marichal P (1987) Anti- / Candida drugs—the biochemical basis for their activity. Crit Rev Microbiol 15(1):57-2
    4. Brajtburg J, Bolard J (1996) Carrier effects on biological activity of amphotericin B. Clin Microbiol Rev 9(4):512-31
    5. Brajtburg J, Powderly WG, Kobayashi GS, Medoff G (1990) Amphotericin B: current understanding of mechanisms of action. Antimicrob Agents Chemother 34(2):183-88 CrossRef
    6. Breivik ON, Owades JL (1957) Spectrophotometric semimicrodetermination of ergosterol in yeast. J Agric Food Chem 5:360-63 CrossRef
    7. Decottignies A, Grant AM, Nichols JW, de Wet H, McIntosh DB, Goffeau A (1998) ATPase and multidrug transport activities of the overexpressed yeast ABC protein Yor1p. J Biol Chem 273(20):12612-2622 CrossRef
    8. Dogra S, Krishnamurthy S, Gupta V, Dixit BL, Gupta CM, Sanglard D, Prasad R (1999) Asymmetric distribution of phosphatidylethanolamine in / C. albicans: possible mediation by CDR1, a multidrug transporter belonging to ATP binding cassette (ABC) superfamily. Yeast 15:111-21
    9. Fonzi WA, Irwin MY (1993) Isogenic strain construction and gene mapping in / Candida albicans. Genetics 134(3):717-28
    10. Gallagher PJ, Bennett DE, Henman MC, Russell RJ, Flint SR, Shanley DB, Coleman DC (1992) Reduced azole susceptibility of oral isolates of / Candida albicans from HIV-positive patients and a derivative exhibiting colony morphology variation. J Gen Microbiol 138(9):1901-911
    11. Gillum A, Tsay EH, Kirsch D (1984) Isolation of the / Candida albicans gene for orotidine-5rsch D (1984) Isolation of the ing colony mo of / S. cerevisiae ura3 and / E. coli pyrF mutations. Mol Gen Genet 198(1):179-82. doi:10.1007/bf00328721
    12. Goffeau A (2008) Drug resistance: the fight against fungi. Nature 452(7187):541-42 CrossRef
    13. Guan W, Jiang H, Guo X, Mancera E, Xu L, Li Y, Steinmetz L, Li Y, Gu Z (2010) Antagonistic changes in sensitivity to antifungal drugs by mutations of an important ABC transporter gene in a fungal pathogen. PLoS ONE 5(6):e11309 CrossRef
    14. Hsuchen C-C, Feingold DS (1973) Selective membrane toxicity of the polyene antibiotics: studies on lecithin membrane models (liposomes). Antimicrob Agents Chemother 4(3):309-15 CrossRef
    15. Karababa M, Coste AT, Rognon B, Bille J, Sanglard D (2004) Comparison of gene expression profiles of / Candida albicans azole-resistant clinical isolates and laboratory strains exposed to drugs inducing multidrug transporters. Antimicrob Agents Chemother 48(8):3064-079
    16. Lamping E, Monk BC, Niimi K, Holmes AR, Tsao S, Tanabe K, Niimi M, Uehara Y, Cannon RD (2007) Characterization of three classes of membrane proteins involved in fungal azole resistance by functional hyperexpression in / Saccharomyces cerevisiae. Eukaryot Cell 6(7):1150-165
    17. Larsen RA, Bauer M, Thomas AM, Graybill JR (2004) Amphotericin B and fluconazole, a potent combination therapy for / Cryptococcal Meningitis. Antimicrob Agents Chemother 48(3):985-91
    18. Lewis RE, Lund BC, Klepser ME, Ernst EJ, Pfaller MA (1998) Assessment of antifungal activities of fluconazole and amphotericin B administered alone and in combination against / Candida albicans by using a dynamic in vitro mycotic infection model. Antimicrob Agents Chemother 42(6):1382-386
    19. Lewis RE, Prince RA, Chi J, Kontoyiannis DP (2002) Itraconazole preexposure attenuates the efficacy of subsequent amphotericin B therapy in a murine model of acute invasive pulmonary aspergillosis. Antimicrob Agents Chemother 46(10):3208-214 CrossRef
    20. Martin E, Maier F, Bhakdi S (1994) Antagonistic effects of fluconazole and 5-fluorocytosine on candidacidal action of amphotericin B in human serum. Antimicrob Agents Chemother 38(6):1331-338 CrossRef
    21. Micheli MD, Bille J, Schueller C, Sanglard D (2002) A common drug-responsive element mediates the upregulation of the / Candida albicans ABC transporters / CDR1 and / CDR2, two genes involved in antifungal drug resistance. Mol Microbiol 43(5):1197-214. doi:10.1046/j.1365-2958.2002.02814.x
    22. Mukhopadhyay K, Kohli A, Prasad R (2002) Drug susceptibilities of yeast cells are affected by membrane lipid composition. Antimicrob Agents Chemother 46(12):3695-705 CrossRef
    23. Mukhopadhyay K, Prasad T, Saini P, Pucadyil TJ, Chattopadhyay A, Prasad R (2004) Membrane sphingolipid–ergosterol interactions are important determinants of multidrug resistance in / Candida albicans. Antimicrob Agents Chemother 48(5):1778-787
    24. National Committee for Clinical Laboratory Standards (2002) Reference method for broth dilution antifungal susceptibility testing of yeasts approved standard, 2nd edn M27-A2. Approved Standard-2nd edn, Pennsylvania, USA
    25. Pasrija R, Prasad T, Prasad R (2005) Membrane raft lipid constituents affect drug susceptibilities of / Candida albicans. Biochem Soc Trans 33:1219-223
    26. Pasrija R, Panwar SL, Prasad R (2008) Multidrug transporters CaCdr1p and CaMdr1p of / Candida albicans display different lipid specificities: both ergosterol and sphingolipids are essential for targeting of CaCdr1p to membrane rafts. Antimicrob Agents Chemother 52(2):694-04
    27. Prasad R, Panwar S (2004) Physiological functions of multidrug transporters in yeast. Curr Sci 86(1):62-3
    28. Prasad R, Wergifosse DP, Goffeau A, Balzi E (1995) Molecular cloning and characterization of a novel gene of / Candida albicans, / CDR1, conferring multiple resistance to drugs and antifungals. Curr Genet 27(4):320-29
    29. Redding S, Smith J, Farinacci G, Rinaldi M, Fothergill A, Rhine-Chalberg J, Pfaller M (1994) Resistance of / Candida albicans to fluconazole during treatment of oropharyngeal Candidiasis in a patient with AIDS: documentation by in vitro susceptibility testing and DNA subtype analysis. Clin Infect Dis 18(2):240-42
    30. Rodriguez MM, Serena C, Marine M, Pastor FJ, Guarro J (2008) Posaconazole combined with amphotericin B, an effective therapy for a murine-disseminated infection caused by / Rhizopus oryzae. Antimicrob Agents Chemother 52:3786-788
    31. Sanglard D, Ischer F, Monod M, Bille J (1996) Susceptibilities of / Candida albicans multidrug transporter mutants to various antifungal agents and other metabolic inhibitors. Antimicrob Agents Chemother 40(10):2300-305
    32. Sanglard D, Ischer F, Monod M, Bille J (1997) Cloning of / Candida albicans genes conferring resistance to azole antifungal agents: characterization of / CDR2, a new multidrug ABC transporter gene. Microbiology 143(2):405-16
    33. Sanglard D, Ischer F, Parkinson T, Falconer D, Bille J (2003) / Candida albicans mutations in the ergosterol biosynthetic pathway and resistance to several antifungal agents. Antimicrob Agents Chemother 47(8):2404-412. doi:10.1128/aac.47.8.2404-2412.2003
    34. Schaffner A, Frick PG (1985) The effect of ketoconazole on amphotericin B in a model of disseminated aspergillosis. J Infect Dis 151(5):902-10 CrossRef
    35. Schultz SG, Thompson SM, Hudson R, Thomas SR, Suzuki Y (1984) Electrophysiology of Necturus urinary bladder: II. Time-dependent current–voltage relations of the basolateral membranes. J Membrane Biol 79(257-69):257 CrossRef
    36. White TC (1997) Increased mRNA levels of / ERG16, / CDR, and / MDR1 correlate with increases in azole resistance in / Candida albicans isolates from a patient infected with human immunodeficiency virus. Antimicrob Agents Chemother 41(7):1482-487
    37. White TC, Marr KA, Bowden RA (1998) Clinical, cellular, and molecular factors that contribute to antifungal drug resistance. Clin Microbiol Rev 11(2):382-02
    38. Xu Z, Zhang LX, Zhang JD, Cao YB, Yu YY, Wang DJ, Ying K, Chen WS, Jiang YY (2006) cDNA microarray analysis of differential gene expression and regulation in clinically drug-resistant isolates of / Candida albicans from bone marrow transplanted patients. Int J Med Microbiol 296(6):421-34
    39. Zhang L, Yan K, Zhang Y, Huang R, Bian J, Zheng C, Sun H, Chen Z, Sun N, An R, Min F, Zhao W, Zhuo Y, You J, Song Y, Yu Z, Liu Z, Yang K, Gao H, Dai H, Zhang X, Wang J, Fu C, Pei G, Liu J, Zhang S, Goodfellow M, Jiang Y, Kuai J, Zhou G, Chen X (2007) High-throughput synergy screening identifies microbial metabolites as combination agents for the treatment of fungal infections. Proc Natl Acad Sci U S A 104(11):4606-611 CrossRef
  • 作者单位:Biao Ren (1) (2)
    Huan-Qin Dai (1)
    Gang Pei (1) (2) (3)
    Yao-Jun Tong (1) (2)
    Ying Zhuo (1)
    Na Yang (1) (2)
    Meng-Yi Su (1)
    Pei Huang (1) (2)
    Yu-Zhuo Yang (1)
    Li-Xin Zhang (1)

    1. Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100190, China
    2. University of Chinese Academy of Sciences, Beijing, 100049, China
    3. Helmholtz Centre for Infection Research, Braunschweig, Germany
  • ISSN:1432-0614
文摘
Most screening approaches produce compounds that target survival genes and are likely to generate resistance over time. Simply having more drugs does not address the potential emergence of resistance caused by target mutation, drug efflux pumps over-expression, and so on. There is a great need to explore new strategies to treat fungal infections caused by drug-resistant pathogens. In this study, we found that azole-resistant Candida albicans with CaCDR1 and CaCDR2 over-expression is hypersensitive against amphotericin B (AmB) by our high throughput synergy screening (HTSS). In contrast, Δcdr1 and Δcdr2 knockout strains were resistant to AmB. Moreover, clinical isolates with increased expression of CaCDR1 and CaCDR2 demonstrated susceptibility to AmB, which can also synergize with the efflux pumps inducer fluphenazine (FPZ). Finally, the increased drug susceptibility to AmB in azole-resistant C. albicans with drug efflux pumps over-expression was consistent with the elevated expression of CaERG11 and its associated ergosterols in clinical isolates. Our data implies that the level of ergosterol contents determines the susceptibility to azoles and AmB in C. albicans. Deep understanding of the above mechanisms would offer new hope to treat drug-resistant C. albicans.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700