Is land use impact assessment in LCA applicable for forest biomass value chains? Findings from comparison of use of Scandinavian wood, agro-biomass and peat for energy
详细信息    查看全文
  • 作者:Tuomas Helin (1)
    Anne Holma (2)
    Sampo Soimakallio (1)
  • 关键词:Barley ; Bioenergy ; Indicators ; Land use ; LCIA ; Peat ; Reed canary grass ; Wood
  • 刊名:The International Journal of Life Cycle Assessment
  • 出版年:2014
  • 出版时间:April 2014
  • 年:2014
  • 卷:19
  • 期:4
  • 页码:770-785
  • 全文大小:436 KB
  • 参考文献:1. Alakangas E (2000) Suomessa k?ytett?vien polttoaineiden ominaisuuksia [Properties of fuels used in Finland]. Espoo 2000. Valtion teknillinen tutkimuskeskus, VTT Research Notes 2045
    2. Alvarenga RAF, Dewulf J, Van Langenhove H, Huijbregts MAJ (2013) Exergy-based accounting for land as a natural resource in life cycle assessment. Int J Life Cycle Assess 18(5):939-47 CrossRef
    3. Baitz M, Albrecht S, Brauner E (2013) LCA’s theory and practice: like ebony and ivory living in perfect harmony? Int J Life Cycle Assess 18:5-3 CrossRef
    4. Barona E, Ramankutty N, Hyman G, Coomes OT (2010) The role of pasture and soybean in deforestation of the Brazilian Amazon. Environ Res Lett 5:024002 CrossRef
    5. Brand?o M, Milà i Canals L (2013) Global characterisation factors to assess land use impacts on biotic production. Int J Life Cycle Assess 18:1243-252 CrossRef
    6. Brand?o M, Milà i Canals L, Clift R (2010) Soil organic carbon changes in the cultivation of energy crops: implications for GHG balances and soil quality for use in LCA. Biomass Bioenerg 35:2323-336 CrossRef
    7. Cespi D, Passarini F, Ciacci L, Vassura I, Castellani V, Collina E, Piazzalunga A, Morselli L (2013) Heating systems LCA: comparison of biomass-based appliances. Int J Life Cycle Assess. doi:10.1007/s11367-013-0611-3
    8. Cherubini F, Str?mman AH (2011) Life cycle assessment of bioenergy systems: state of the art and future challenges. Bioresource Technol 102(2):437-51 CrossRef
    9. Cherubini F, Peters GP, Berntsen T, Str?mman AH, Hertwich E (2011) CO2 emissions from biomass combustion for bioenergy: atmospheric decay and contribution to global warming. Glob Change Biol Bioenerg 3:413-26 CrossRef
    10. Coelho CRV, Michelsen O (2013) Land use impacts on biodiversity from kiwifruit production in New Zealand assessed with global and national datasets. Int J Life Cycle Assess. doi:10.1007/s11367-013-0628-7
    11. de Baan L, Alkemade R, Koellner T (2013a) Land use impacts on biodiversity in LCA: a global approach. Int J Life Cycle Assess 18:1216-230 CrossRef
    12. de Baan L, Mutel CL, Curran M, Hellweg S, Koellner T (2013b) Land use in life cycle assessment: global characterization factors based on regional and global potential species extinction. Environ Sci Technol 47:9281-290 CrossRef
    13. De Jong J, Humphrey JW, Smith M, Ravn HP (2011) The impact of forest management on biodiversity. Paper 1 in Raulund-Rasmussen K, De Jong J, Humphrey JW et al. Papers on impacts of forest management on environmental services. EFI Technical Report 57, 2011
    14. Directive 2009/28/EC (2011) Directive of the European Parliament and of the Council on the promotion of the use of energy from renewable sources. The Official Journal of the European Union. Available at: http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=Oj:L:2009:140:0016:0062:en:PDF(accessed 21 May 2013)
    15. EC European Commission (2011) Energy roadmap 2050. COM(2011) 885, 15 December. URL http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2011:0885:FIN:EN:PDF[Accessed on 14.6.2013]
    16. ECON P?yry (2008) Status and potentials of bioenergy in the Nordic countries—summary. ECON P?yry-Report no. 2008-57. URL http://bioenergypromotion.org/project/publications/status-and-potentials-of-bioenergy-in-the-nordic-countries-summary/[Accessed on 14.6.2013]
    17. Ewing B, Goldfinger S, Wackernagel M, Stechbart M, Rizk SM, Reed A, Kitzes J (2010) Ecological footprint atlas 2010. Global Footprint Network, Oakland
    18. Finnish Forest Research Institute METLA (2011) Finnish statistical yearbook of forestry. Mets?ntutkimuslaitos METLA, Vantaa. ISBN 978-951-40-2330-9
    19. Finnveden G, Hauschild MZ, Ekvall T, Guinée J, Heijungs R, Hellweg S, Koehler A, Pennington D, Suh S (2009) Recent developments in life cycle assessment. J Environ Manag 91:1-1 CrossRef
    20. Goedkoop M, Heijungs R, Huijbregts MAJ, De Schryver A, Struijs J, van Zelm R (2008) ReCiPe 2008. A life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level. The Hague, The Netherlands: VROM, 2009
    21. Gundersen P, Raulund-Rasmussen K, Ring E (2011) The impact of forest management on water quality in Europe. Paper 4 in Raulund-Rasmussen K, De Jong J, Humphrey JW et al. Papers on impacts of forest management on environmental services. EFI Technical Report 57, 2011
    22. Haberl H, Erb KH, Krausmann F, Gaube V, Bondeau A, Plutzar C, Gingrich S, Lucht W, Fischer-Kowalski M (2007) Quantifying and mapping the human appropriation of net primary production in earth’s terrestrial ecosystems. PNAS 104:12942-2947 CrossRef
    23. Hansen K, Rosenqvist L, Vsterdal L, Gundersen P (2007) Nitrate leaching from three afforestation chronosequences on former arable land in Denmark. Glob Change Biol 13:1250-264 CrossRef
    24. Hansen K, Stupak I, Ring E, Raulund-Rasmussen K (2011) The impact of forest management on soil quality. Paper 3 in Raulund-Rasmussen K, De Jong J, Humphrey JW et al. Papers on impacts of forest management on environmental services. EFI Technical Report 57, 2011
    25. Hanski I, Ovaskainen O (2002) Extinction debt at extinction threshold. Conserv Biol 16:666-73 CrossRef
    26. Helin T, Sokka L, Soimakallio S, Pingoud K, Pajula T (2013) Approaches for inclusion of forest carbon cycle in life cycle assessment—a review. Glob Change Biol Bioenerg 5(5):475-86 CrossRef
    27. Helmisaari H-S, Hanssen KH, Jacobson S et al (2011) Logging residue removal after thinning in Nordic boreal forests: long-term impact on tree growth. Forest Ecol Manag 261:1919-927 CrossRef
    28. Hertel T, Golub WA, Jones AD, O'Hare M, Plevin RJ, Kammen DM (2010) Effects of US maize ethanol on global land use and greenhouse gas emissions: estimating market-mediated responses. Bioscience 60(3):223-31 CrossRef
    29. Hobbs RJ, Arico S, Aronson J et al (2006) Novel ecosystems: theoretical and management aspects of the new ecological world order. Global Ecol Biogeogr 15:1- CrossRef
    30. Huijbregts MAJ, Hellweg S, Frischknecht R, Hungerbühlerd K, Hendriks AJ (2008) Ecological footprint accounting in the life cycle assessment of products. Ecol Econ 64:798-07 CrossRef
    31. IPCC Intergovernmental Panel on Climate Change (2006) IPCC good practice guidance for national inventories. Volume 2: energy. Chapter 2: stationary combustion. URL http://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_2_Ch2_Stationary_Combustion.pdf[Accessed on 14.6.2013]
    32. JRC-IES Joint Research Centre -Institute for Environment & Sustainability (2010) International Reference Life Cycle Data System (ILCD) handbook. JRC-IES, Ispra, Italy
    33. Jyske T, M?kinen H, Saranp?? P (2008) Wood density within Norway spruce stems. Silva Fennica 42(3):439-55 CrossRef
    34. Katzensteiner K, Kilmo E, Szukics U, Delaney CM (2011) Impact of forest management alternatives on water budgets and runoff processes. Paper 2 in Raulund-Rasmussen K, De Jong J, Humphrey JW et al. Papers on impacts of forest management on environmental services. EFI Technical Report 57, 2011
    35. Kirkinen J, Minkkinen K, Penttil? T, Kojola S, Siev?nen R, Alm J, Saarnio S, Silvan N, Laine J, Savolainen I (2007) Greenhouse gas impact due to different peat fuel utilisation chains in Finland—a life cycle approach. Boreal Environ Res 12(2):211-23
    36. Kirkinen J, Palosuo T, Holmgren K, Savolainen I (2008) Greenhouse impact due to the use of combustible fuels: life cycle viewpoint and relative radiative forcing commitment. Environ Manag 42:458-69 CrossRef
    37. Kl?verpris J, Wenzel H, Nielsen PH (2008) Life cycle inventory modelling of land use induced by crop consumption. Part 1: conceptual analysis and methodological proposal. Int J Life Cycle Assess 13(1):13-1
    38. Koellner T, Geyer R (eds) (2013) Global land use impacts on biodiversity and ecosystem services in LCA. Int J Life Cycle Assess 18(6):1185-187
    39. Koellner T, de Baan L, Beck T, Brand?o M, Civit B, Margni M, Milà i Canals L, Saad R, de Souza DM, Müller-Wenk R (2013a) UNEP-SETAC guideline on global land use impact assessment on biodiversity and ecosystem services in LCA. Int J Life Cycle Assess 18:1188-202 CrossRef
    40. Koellner T, de Baan L, Beck T, Brand?o M, Civit B, Goedkoop M, Margni M, Milà i Canals L, Müller-Wenk K, Weidema B, Wittstock B (2013b) Principles for life cycle inventories of land use on a global scale. Int J Life Cycle Assess 18:1203-215 CrossRef
    41. K?hl M, Bastup-Birk A, Marchetti M et al (2011) Criterion 3: maintenance and encouragement of productive functions of forests (wood and non-wood). In: State of Europe’s forests 2011. Status and trends in sustainable forest management in Europe (eds FOREST EUROPE, UNECE and FAO). pp. 51-4, Ministerial Conference on the Protection of Forests in Europe, Oslo
    42. Koponen K, Soimakallio S (2013) Reconsideration of the land use baseline may have a significant impact on the GHG balances of agro-bioenergy. Bioenergy Australia Conference 2013. 25-27. November 2013, Hunter Valley, NSW, Australia
    43. Luyssaert S, Schulze ED, B?rner A, Knohl A, Hessenm?ller D, Law BE, Ciais P, Grace J (2008) Old-growth forests as global carbon sinks. Nature 455:213-15 CrossRef
    44. M?kinen T, Soimakallio S, Paappanen T, Pahkala K, Mikkola H (2006) Liikenteen biopolttoaineiden ja peltoenergian kasvihuonekaasutaseet ja uudet liiketoimintakonseptit [Greenhouse gas balances and new business opportunities for biomass-based transportation fuels and agro-biomass in Finland]. Appendices E & K. Espoo 2006. VTT Research Notes 2357
    45. Mattila T, Sepp?l? J, Nissinen A, M?enp?? I (2011) Land use impacts of industries and products in the Finnish economy: a comparison of three indicators. Biomass Bioenerg 35:4781-787 CrossRef
    46. Mattila T, Helin T, Antikainen R (2012) Land use indicators in life cycle assessment—a case study on beer production. Int J Life Cycle Assess 17:277-86 CrossRef
    47. Michelsen O (2008) Assessment of land use impact on biodiversity. Proposal of a new methodology exemplified with forestry operations in Norway. Int J Life Cycle Assess 13(1):22-1
    48. Michelsen O, Cherubini F, Str?mman AH (2012) Impact assessment of biodiversity and carbon pools from land use and land use changes in life cycle assessment, exemplified with forestry operations in Norway. J Ind Ecol 16:231-42 CrossRef
    49. Milà i Canals L, Bauer C, Depestele J, Dubreuil A, Freiermuth Knuchel R, Gaillard G, Michelsen O, Müller-Wenk R, Rydgren B (2007a) Key elements in a framework for land use impact assessment within LCA. Int J Life Cycle Assess 12(1):5-5 CrossRef
    50. Milà i Canals L, Romanyà J, Cowell SJ (2007b) Method for assessing impacts on life support functions (LSF) related to the use of ‘fertile land-in life cycle assessment (LCA). J Clean Prod 15:1426-440 CrossRef
    51. Milà i Canals L, Rigarlsford G, Sim S (2013) Land use impact assessment of margarine. Int J Life Cycle Assess 18:1265-277 CrossRef
    52. Millennium Ecosystem Assessment (2005) Ecosystems and human well-being. Synthesis. Washington: Island. http://www.maweb.org/documents/document.354.aspx.pdf
    53. Müller-Wenk R, Brand?o M (2010) Climatic impact of land use in LCA—carbon transfers between vegetation/soil and air. Int J Life Cycle Assess 15:172-82 CrossRef
    54. Nú?ez M, Antón A, Mu?oz P, Rieradevall J (2013) Inclusion of soil erosion impacts in life cycle assessment on a global scale: application to energy crops in Spain. Int J Life Cycle Assess 18:755-67 CrossRef
    55. Pingoud K, Ekholm T, Savolainen I (2012) Global warming potential (GWP) factors and warming payback time as climate indicators of forest biomass use. Mitig Adapt Strateg Glob Change 17:369-83 CrossRef
    56. Plevin RJ, O’Hare M, Jones AD, Torn MS, Gibbs HK (2010) Greenhouse gas emissions from biofuels: indirect land use change are uncertain but may be much greater than previously estimated. Environ Sci Technol 44(21):8015-021 CrossRef
    57. Raulund-Rasmussen K, De Jong J, Humphrey JW et al (2011) Papers on impacts of forest management on environmental services. EFI Technical Report 57:2011
    58. Ridoutt BG, Page G, Opie K, Huang J, Bellotti W (2013) Carbon, water and land use footprints of beef cattle production systems in southern Australia. J Clean Prod. doi:10.1016/j.jclepro.2013.08.012
    59. Rockstr?m J, Steffen W, Noone K et al (2009) A safe operating space for humanity. Nature 461:472-75 CrossRef
    60. Saad R, Koellner T, Margni M (2013) Land use impacts on freshwater regulation, erosion regulation and water purification: a spatial approach for a global scale. Int J Life Cycle Assess 18:1253-264 CrossRef
    61. Schmidt JH (2008) Development of LCIA characterisation factors for land use impacts on biodiversity. J Clean Prod 16:1929-942 CrossRef
    62. Searchinger T, Heimlich R, Houghton RA, Dong F, Elobeid A, Fabiosa J, Tokgoz S, Hayes D, Yu TH (2008) Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land use change. Science 319(5867):1238-240 CrossRef
    63. Soimakallio S, M?kinen T, Ekholm T, Pahkala K, Mikkola H, Paappanen T (2009) Greenhouse gas balances of transportation biofuels, electricity and heat generation in Finland—dealing with the uncertainties. Energ Policy 37(1):80-0 CrossRef
    64. Stanners D, Bosch P, Dom A, Gabrielsen P, Gee D, Martin J, Rickard L, Weber JL (2007) Frameworks for environmental assessment and indicators at the EEA. In: Hàk T, Moldan B, Dahl AL (eds) Sustainability indicators: a scientific assessment. Island, Washington, pp 127-44
    65. Statistics Finland (2011) Fuel classification 2011. Greenhouse gas emission intensities for greenhouse gas inventory. Statistics Finland
    66. Steen-Olsen K, Weinzettel J, Cranston G, Ercin AE, Hertwich EG (2012) Carbon, land, and water footprint accounts for the European Union: consumption, production, and displacements through international trade. Environ Sci Technol 46:10883-0891 CrossRef
    67. Wackernagel M, Schulz NB, Deumling D, Linares AC, Jenkins M, Kapos V, Monfreda C, Loh J, Myers N (2002) Tracking the ecological overshoot of the human economy. PNAS 99:9266-271 CrossRef
    68. Warner F, Althaus HJ, Künninger T, Richter K (2007) Life cycle inventories of wood as fuel and construction material. Ecoinvent report no. 9, data v2.0. Table 4.2. EMPA Dübendorf, Swiss Centre for Life Cycle Inventories, Duebendorf, Switzerland
  • 作者单位:Tuomas Helin (1)
    Anne Holma (2)
    Sampo Soimakallio (1)

    1. VTT Technical Research Centre of Finland, P.O. Box 1000, 02044, Espoo, Finland
    2. Finnish Environment Institute SYKE, P.O. Box 111, 801010, Joensuu, Finland
  • ISSN:1614-7502
文摘
Purpose A framework for the inclusion of land use impact assessment and a set of land use impact indicators has been recently proposed for life cycle assessment (LCA) and no case studies are available for forest biomass. The proposed methodology is tested for Scandinavian managed forestry; a comparative case study is made for energy from wood, agro-biomass and peat; and sensitivity to forest management options is analysed. Methods The functional unit of this comparative case study is 1?GJ of energy in solid fuels. The land use impact assessment framework of the United Nations Environment Programme and the Society of Environmental Toxicology and Chemistry (UNEP-SETAC) is followed and its application for wood biomass is critically analysed. Applied midpoint indicators include ecological footprint and human appropriation of net primary production, global warming potential indicator for biomass (GWPbio-100) and impact indicators proposed by UNEP-SETAC on ecosystem services and biodiversity. Options for forest biomass land inventory modelling are discussed. The system boundary covers only the biomass acquisition phase. Management scenarios are formulated for forest and barley biomass, and a sensitivity analysis focuses on impacts of land transformations for agro-biomass. Results and discussion Meaningful differences were found in between solid biofuels from distinct land use classes. The impact indicator results were sensitive to land occupation and transformation and differed significantly from inventory results. Current impact assessment method is not sensitive to land management scenarios because the published characterisation factors are still too coarse and indicate differences only between land use types. All indicators on ecosystem services and biodiversity were sensitive to the assumptions related with land transformation. The land occupation (m2a) approach in inventory was found challenging for Scandinavian wood, due to long rotation periods and variable intensities of harvests. Some suggestions of UNEP-SETAC were challenged for the sake of practicality and relevance for decision support. Conclusions Land use impact assessment framework for LCA and life cycle impact assessment (LCIA) indicators could be applied in a comparison of solid bioenergy sources. Although forest bioenergy has higher land occupation than agro-bioenergy, LCIA indicator results are of similar magnitude or even lower for forest bioenergy. Previous literature indicates that environmental impacts of land use are significant, but it remains questionable if these are captured with satisfactory reliability with the applied LCA methodology, especially for forest biomass. Short and long time perspectives of land use impacts should be studied in LCA with characterisation factors for all relevant timeframes, not only 500?years, with a forward-looking perspective. Characterisation factors need to be modelled further for different (forest) land management intensities and for peat excavation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700