Simulation of Electronic Center Formation by Irradiation in Silicon Crystals
详细信息    查看全文
文摘
We present the results of a study on localized electronic centers formed in crystals by external influences (impurity introduction and irradiation). The main aim is to determine the nature of these centers in the forbidden gap of the energy states of the crystal lattice. For the case of semiconductors, silicon (Si) was applied as model material to determine the energy levels and concentration of radiation defects for application to both doped and other materials. This method relies on solving the appropriate equation describing the variation of the charge carrier concentration as a function of temperature n(T) for silicon crystals with two different energy levels and for a large set of N1, N2 (concentrations of electronic centers at each level), and n values. A total of almost 500 such combinations were found. For silicon, energy level values of ε1 = 0.22 eV and ε2 = 0.34 eV were used for the forbidden gap (with corresponding slopes determined from experimental temperature-dependent Hall-effect measurements) and compared with photoconductivity spectra. Additionally, it was shown that, for particular correlations among N1, N2, and n, curve slopes of ε1/2 = 0.11 eV, ε2/2 = 0.17 eV, and α = 1/2(ε1 + ε2) = 0.28 eV also apply. Comparison between experimental results for irradiation of silicon crystals by 3.5-MeV energy electrons and Co60γ-quanta revealed that the n(T) curve slopes do not always coincide with the actual energy levels (electronic centers).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700