Performance of Deterministic and Probabilistic Hydrological Forecasts for the Short-Term Optimization of a Tropical Hydropower Reservoir
详细信息    查看全文
  • 作者:Fernando Mainardi Fan ; Dirk Schwanenberg ; Rodolfo Alvarado…
  • 刊名:Water Resources Management
  • 出版年:2016
  • 出版时间:August 2016
  • 年:2016
  • 卷:30
  • 期:10
  • 页码:3609-3625
  • 全文大小:1,441 KB
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Hydrogeology
    Geotechnical Engineering
    Meteorology and Climatology
    Civil Engineering
    Environment
  • 出版者:Springer Netherlands
  • ISSN:1573-1650
  • 卷排序:30
文摘
Hydropower is the most important source of electricity in Brazil. It is subject to the natural variability of water yield. One building block of the proper management of hydropower assets is the short-term forecast of reservoir inflows as input for an online, event-based optimization of its release strategy. While deterministic forecasts and optimization schemes are the established techniques for short-term reservoir management, the use of probabilistic ensemble forecasts and multi-stage stochastic optimization techniques is receiving growing attention. The present work introduces a novel, mass conservative scenario tree reduction in combination with a detailed hindcasting and closed-loop control experiments for a multi-purpose hydropower reservoir in a tropical region in Brazil. The case study is the hydropower project Três Marias, which is operated with two main objectives: (i) hydroelectricity generation and (ii) flood control downstream. In the experiments, precipitation forecasts based on observed data, deterministic and probabilistic forecasts are used to generate streamflow forecasts in a hydrological model over a period of 2 years. Results for a perfect forecast show the potential benefit of the online optimization and indicate a desired forecast lead time of 30 days. In comparison, the use of actual forecasts of up to 15 days shows the practical benefit of operational forecasts, where stochastic optimization (15 days lead time) outperforms the deterministic version (10 days lead time) significantly. The range of the energy production rate between the different approaches is relatively small, between 78% and 80%, suggesting that the use of stochastic optimization combined with ensemble forecasts leads to a significantly higher level of flood protection without compromising the energy production.KeywordsHydrological forecastingShort-term optimizationEnsemble forecastingReal-time controlFlood mitigationTrês Marias Dam

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700