High-throughput prediction of eucalypt lignin syringyl/guaiacyl content using multivariate analysis: a comparison between mid-infrared, near-infrared, and Raman spectroscopies for model development
详细信息    查看全文
  • 作者:Jason S Lupoi (2) (3)
    Seema Singh (3) (4)
    Mark Davis (5) (6)
    David J Lee (7)
    Merv Shepherd (8)
    Blake A Simmons (2) (3) (4)
    Robert J Henry (2)

    2. Queensland Alliance for Agriculture and Food Innovation
    ; University of Queensland ; 306 Carmody Road ; St. Lucia ; QLD ; 4072 ; Australia
    3. Joint BioEnergy Institute
    ; Lawrence Berkeley National Laboratory ; 5885 Hollis Street ; Emeryville ; CA ; 94608 ; USA
    4. Biological and Materials Science Center
    ; Sandia National Laboratories ; 7011 East Avenue ; Livermore ; CA ; 94551 ; USA
    5. BioEnergy Science Center
    ; Oak Ridge National Laboratory ; 1 Bethel Valley Rd ; Oak Ridge ; TN ; 37831 ; USA
    6. National Bioenergy Center
    ; National Renewable Energy Laboratory ; 15013 Denver West Parkway ; Golden ; CO ; 80401 ; USA
    7. Forest Industries Research Centre
    ; University of the Sunshine Coast and Queensland Department of Agriculture ; Fisheries and Forestry ; Locked Bag 4 ; Maroochydore DC ; QLD ; 4558 ; Australia
    8. Southern Cross Plant Science
    ; Southern Cross University ; Military Road ; East Lismore ; NSW ; 2480 ; Australia
  • 关键词:Biomass ; Raman spectroscopy ; Near ; infrared spectroscopy ; Fourier ; transform infrared spectroscopy ; High ; throughput ; Multivariate analysis ; Lignin S/G
  • 刊名:Biotechnology for Biofuels
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:7
  • 期:1
  • 全文大小:592 KB
  • 参考文献:1. Henry, RJ (2010) Evaluation of plant biomass resources available for replacement of fossil oil. Plant Biotechnol J 8: pp. 288-293 CrossRef
    2. Karp, A, Shield, I (2008) Bioenergy from plants and the sustainable yield challenge. New Phytol 179: pp. 15-32 CrossRef
    3. Sims, REH, Mabee, W, Saddler, JN, Taylor, M (2010) An overview of second generation biofuel technologies. Bioresour Technol 101: pp. 1570-1580 CrossRef
    4. Sykes, R, Yung, M, Novaes, E, Kirst, M, Peter, G, Davis, M (2009) High-throughput screening of plant cell-wall composition using pyrolysis molecular beam mass spectroscopy. Methods Mol Bio 581: pp. 169-183 CrossRef
    5. Browning, BL Wood Lignins. In: Browning, BL eds. (1963) The Chemistry of Wood. Interscience, New York, NY, pp. 249-311
    6. Sarkanen, KV, Hergert, HL Classification and Distribution. In: Sarkanen, KV, Ludwig, CH eds. (1971) Lignins: Occurrence and Formation, Structure, Chemical and Macromolecular Properties, and Utilization. John Wiley & Sons, New York, NY, pp. 43-94
    7. Davison, BH, Drescher, SR, Tuskan, GA, Davis, MF, Nghiem, NP (2006) Variation of S/G ratio and lignin content in a Populus family influences the release of xylose by dilute acid hydrolysis. Appl Biochem Biotechnol 129鈥?32: pp. 427-435 CrossRef
    8. Tsutsumi, Y, Kondo, R, Sakai, K, Imamura, H (1995) The difference of reactivity between syringyl lignin and guaiacyl lignin in alkaline systems. Holzforschung 49: pp. 423-428 CrossRef
    9. del Rio, JC, Gutierrez, A, Hernando, M, Landin, P, Romero, J, Martinez, AT (2005) Determining the influence of eucalypt lignin composition in paper pulp yield using Py-GC/MS. J Anal Appl Pyrolysis 74: pp. 110-115 CrossRef
    10. Studer, MH, DeMartini, JD, Davis, MF, Sykes, RW, Davison, B, Keller, M, Tuskan, GA, Wyman, CE (2011) Lignin content in natural Populus variants affects sugar release. Proc Natl Acad Sci USA 108: pp. 6300-6305 CrossRef
    11. Li, X, Ximenes, E, Kim, Y, Slininger, M, Meilan, R, Ladisch, M, Chapple, C (2010) Lignin monomer composition affects Arabidopsis cell-wall degradability after liquid hot water pretreatment. Biotechnol Biofuels 3: pp. 27 CrossRef
    12. Lupoi, JS, Singh, S, Simmons, BA, Henry, RJ (2014) Assessment of lignocellulosic biomass using analytical spectroscopy: an evolution to high-throughput techniques. Bioenerg Res 7: pp. 1-23 CrossRef
    13. Alves, A, Simoes, R, Stackpole, DJ, Vaillancourt, RE, Potts, BM, Schwanninger, M, Rodrigues, J (2011) Determination of the syringyl/guaiacyl ratio of Eucalyptus globulus wood lignin by near infrared-based partial least squares regression models using analytical pyrolysis as the reference method. J Near Infrared Spectrosc 19: pp. 343-348 CrossRef
    14. del Rio, JC, Gutierrez, A, Rodriguez, IM, Ibarra, D, Martinez, AT (2007) Composition of non-woody plant lignins and cinnamic acids by Py-GC/MS, Py/TMAH and FT-IR. J Anal Appl Pyrolysis 79: pp. 39-46 CrossRef
    15. Lupoi, JS, Smith, EA (2012) Characterization of woody and herbaceous biomasses lignin composition with 1064聽nm dispersive multichannel Raman spectroscopy. Appl Spectrosc 66: pp. 903-910 CrossRef
    16. Ona, T, Sonoda, T, Ito, K, Shibata, M, Katayama, T, Kato, T, Ootake, Y (1998) Non-destructive determination of lignin syringyl/guaiacyl monomeric composition in native wood by Fourier-transform Raman spectroscopy. J Wood Chem Technol 18: pp. 43-51 CrossRef
    17. Robinson, AR, Mansfield, SD (2009) Rapid analysis of poplar lignin monomer composition by a streamlined thioacidolysis procedure and near-infrared reflectance-based prediction modeling. Plant J 58: pp. 706-714 CrossRef
    18. Saariaho, A-M, Jaaskelainen, A-S, Nuopponen, M, Vuorinen, T (2003) Ultraviolet resonance Raman spectroscopy in lignin analysis: determination of characteristic vibrations of p-hydroxyphenyl, guaiacyl, and syringyl lignin structures. Appl Spectrosc 57: pp. 58-66 CrossRef
    19. Stackpole Desmond, J, Vaillancourt Rene, E, Alves, A, Rodrigues, J, Potts Brad, M (2011) Genetic variation in the chemical components of Eucalyptus globulus wood. G3 (Bethesda) 1: pp. 151-159 CrossRef
    20. Sun, L, Varanasi, P, Yang, F, Loque, D, Simmons, BA, Singh, S (2012) Rapid determination of syringyl:guaiacyl ratios using FT-Raman spectroscopy. Biotechnol Bioeng 109: pp. 647-656 CrossRef
    21. Takayama, M, Johjima, T, Yamanaka, T, Wariishi, H, Tanaka, H (1997) Fourier-transform Raman assignment of guaiacyl and syringyl marker bands for lignin determination. Spectrochim Acta A Mol Biomol Spectrosc 53A: pp. 1621-1628 CrossRef
    22. Yamada, T, Yeh, T-F, Chang, H-M, Li, L, Kadla, JF, Chiang, VL (2006) Rapid analysis of transgenic trees using transmittance near-infrared spectroscopy (NIR). Holzforschung 60: pp. 24-28 CrossRef
    23. Ona, T, Sonoda, T, Ohshima, J, Yokota, S, Yoshizawa, N (2003) A rapid quantitative method to assess Eucalyptus wood properties for kraft pulp production by FT-Raman spectroscopy. J Pulp Pap Sci 29: pp. 6-10
    24. Derkacheva, OY (2013) Estimation of aromatic structure contents in hardwood lignins from IR absorption spectra. J Appl Spectrosc 80: pp. 670-676 CrossRef
    25. Huang, Y, Wang, L, Chao, Y, Nawawi, DS, Akiyama, T, Yokoyama, T, Matsumoto, Y (2012) Analysis of lignin aromatic structure in wood based on the IR spectrum. J Wood Chem Technol 32: pp. 294-303 CrossRef
    26. Sammons, RJ, Harper, DP, Labbe, N, Bozell, JJ, Elder, T, Rials, TG (2013) Characterization of organosolv lignins using thermal and FT-IR spectroscopic analysis. BioResources 8: pp. 2752-2767
    27. McCreery, RL (2000) Raman Spectroscopy for Chemical Analysis. Wiley Interscience, New York, USA CrossRef
    28. Meyer, MW, Lupoi, JS, Smith, EA (2011) 1064聽nm dispersive multichannel Raman spectroscopy for the analysis of plant lignin. Anal Chim Acta 706: pp. 164-170 CrossRef
    29. Vitek, P, Ali, EMA, Edwards, HGM, Jehlicka, J, Cox, R, Page, K (2012) Evaluation of portable Raman spectrometer with 1064聽nm excitation for geological and forensic applications. Spectrochim Acta A Mol Biomol Spectrosc 86: pp. 320-327 CrossRef
    30. Smith, W, Dent, G (2005) Modern Raman Spectroscopy. John Wiley & Sons, Chichester, UK
    31. Workman, JJ (1996) Interpretive spectroscopy for near infrared. Appl Spectrosc Rev 31: pp. 251-320 CrossRef
    32. Carroll, A, Somerville, C (2009) Cellulosic biofuels. Annu Rev Plant Biol 60: pp. 165-182 CrossRef
    33. Simmons, BA Bioenergy from plants and plant residues. In: Altman AaH, PM eds. (2011) Plant Biotechnology and Agriculture: Prospects for the 21st Century. Academic, Oxford, pp. 495-506
    34. Shepherd, M, Bartle, J, Lee, DJ, Brawner, J, Bush, D, Turnbull, P, MacDonel, P, Brown, TR, Simmons, B, Henry, R (2011) Eucalypts as a biofuel feedstock. Biofuels 2: pp. 639-657 CrossRef
    35. Larsen, KL, Barsberg, S (2010) Theoretical and Raman spectroscopic studies of phenolic lignin model monomers. J Phys Chem B 114: pp. 8009-8021 CrossRef
    36. Wiley, JH, Atalla, RH (1987) Band assignments in the Raman spectra of celluloses. Carbohydr Res 160: pp. 113-129 CrossRef
    37. Agarwal, UP, Atalla Rajai, H Vibrational Spectroscopy鈥? In: Heitner, C, Dimmel, DR, Schmidt, JA eds. (2010) Lignin and Lignans: Advances in Chemistry. CRC Press, Boca Raton,Florida, pp. 103-136 CrossRef
    38. Faix, O (1991) Classification of lignins from different botanical origins by FT-IR spectroscopy. Holzforschung 45: pp. 21-27 CrossRef
    39. Faix, O Fourier transform infrared spectroscopy [of lignin in solid state]鈥? In: Lin, SY, Dence, CW eds. (1992) Methods in Lignin Chemistry. Springer, Berlin, Germany, pp. 83-109 CrossRef
    40. Kubo, S, Kadla, JF (2005) Hydrogen bonding in lignin: a Fourier transform infrared model compound study. Biomacromolecules 6: pp. 2815-2821 CrossRef
    41. Bermello, A, Del Valle, M, Orea, U, Carballo, LR (2002) Characterization by infrared spectrometry of lignins of three Eucalyptus species. Int J Polym Mater 51: pp. 557-566 CrossRef
    42. Barker, B, Owen, NL (1999) Identifying softwoods and hardwoods by infrared spectroscopy. J Chem Educ 76: pp. 1706-1709 CrossRef
    43. Saariaho, A-M, Argyropoulos, DS, Jaeaeskelaeinen, A-S, Vuorinen, T (2005) Development of the partial least squares models for the interpretation of the UV resonance Raman spectra of lignin model compounds. Vib Spectrosc 37: pp. 111-121 CrossRef
    44. Agarwal, UP, McSweeny, JD, Ralph, SA (2011) FT-Raman investigation of milled-wood lignins: softwood, hardwood, and chemically modified black spruce lignins. J Wood Chem Technol 31: pp. 324-344 CrossRef
    45. Schwanninger, M, Rodrigues, JC, Fackler, K (2011) A review of band assignments in near infrared spectra of wood and wood components. J Near Infrared Spectrosc 19: pp. 287-308 CrossRef
    Workman, J, Weyer, L eds. (2007) Practical Guide to Interpretive Near-Infrared Spectroscopy. CRC Press, Boca Raton, Florida
    46. Michell, AJ, Schimleck, LR (1996) NIR spectroscopy of woods from Eucalyptus globulus. Appita J 49: pp. 23-26
    47. Shenk, JS, Workman, JJ, Westerhaus, MO (2008) Application of NIR spectroscopy to agricultural products. Pract Spectrosc 35: pp. 347-386
    48. Alves, AMM, Simoes, RFS, Santos, CA, Potts, BM, Rodrigues, J, Schwanninger, M (2012) Determination of Eucalyptus globulus wood extractives content by near infrared-based partial least squares regression models: comparison between extraction procedures. J Near Infrared Spectrosc 20: pp. 275-285 CrossRef
    49. Lee, DJ (2007) Achievements in forest tree genetic improvement in Australia and New Zealand 2: Development of Corymbia species and hybrids for plantations in eastern Australia. Aust For 70: pp. 11-16 CrossRef
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Biotechnology
    Plant Breeding/Biotechnology
    Renewable and Green Energy
    Environmental Engineering/Biotechnology
  • 出版者:BioMed Central
  • ISSN:1754-6834
文摘
Background In order to rapidly and efficiently screen potential biofuel feedstock candidates for quintessential traits, robust high-throughput analytical techniques must be developed and honed. The traditional methods of measuring lignin syringyl/guaiacyl (S/G) ratio can be laborious, involve hazardous reagents, and/or be destructive. Vibrational spectroscopy can furnish high-throughput instrumentation without the limitations of the traditional techniques. Spectral data from mid-infrared, near-infrared, and Raman spectroscopies was combined with S/G ratios, obtained using pyrolysis molecular beam mass spectrometry, from 245 different eucalypt and Acacia trees across 17 species. Iterations of spectral processing allowed the assembly of robust predictive models using partial least squares (PLS). Results The PLS models were rigorously evaluated using three different randomly generated calibration and validation sets for each spectral processing approach. Root mean standard errors of prediction for validation sets were lowest for models comprised of Raman (0.13 to 0.16) and mid-infrared (0.13 to 0.15) spectral data, while near-infrared spectroscopy led to more erroneous predictions (0.18 to 0.21). Correlation coefficients (r) for the validation sets followed a similar pattern: Raman (0.89 to 0.91), mid-infrared (0.87 to 0.91), and near-infrared (0.79 to 0.82). These statistics signify that Raman and mid-infrared spectroscopy led to the most accurate predictions of S/G ratio in a diverse consortium of feedstocks. Conclusion Eucalypts present an attractive option for biofuel and biochemical production. Given the assortment of over 900 different species of Eucalyptus and Corymbia, in addition to various species of Acacia, it is necessary to isolate those possessing ideal biofuel traits. This research has demonstrated the validity of vibrational spectroscopy to efficiently partition different potential biofuel feedstocks according to lignin S/G ratio, significantly reducing experiment and analysis time and expense while providing non-destructive, accurate, global, predictive models encompassing a diverse array of feedstocks.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700