Human factors explain the majority of MODIS-derived trends in vegetation cover in Israel: a densely populated country in the eastern Mediterranean
详细信息    查看全文
  • 作者:Noam Levin
  • 关键词:Remote sensing ; Land use ; Land cover ; NDVI ; Human factors ; Climatic variability ; Rainfall
  • 刊名:Regional Environmental Change
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:16
  • 期:4
  • 页码:1197-1211
  • 全文大小:2,667 KB
  • 参考文献:Achiron-Frumkin T (2011) Report on the state of nature 2010. The Ma’arag (LTER-Israel), Israel Academy of Sciences, Jerusalem (in Hebrew)
    Alterman R (2001) National-level planning in Israel: walking the tightrope between government control and privatization. National-Level Planning in Democratic Countries, chapter 11, pp 257–288 (Liverpool University Press)
    Asner GP (2014) Satellites and psychology for improved forest monitoring. Proc Natl Acad Sci 111:567–568. doi:10.​1073/​pnas.​1322557111 CrossRef
    Asner GP, Heidebrecht KB (2002) Spectral unmixing of vegetation, soil and dry carbon cover in arid regions: comparing multispectral and hyperspectral observations. Int J Remote Sens 23:3939–3958. doi:10.​1080/​0143116011011596​0 CrossRef
    Bennie J, Davies TW, Duffy JP, Inger R, Gaston KJ (2014) Contrasting trends in light pollution across Europe based on satellite observed night time lights. Scientific Rep 4:3789. doi:10.​1038/​srep03789
    Bino G, Levin N, Darawshi S, Van Der Hal N, Reich-Solomon A, Kark S (2008) Accurate prediction of bird species richness patterns in an urban environment using Landsat-derived NDVI and spectral unmixing. Int J Remote Sens 29:3675–3700. doi:10.​1080/​0143116070177253​4 CrossRef
    Bowler DE, Buyung-Ali L, Knight TM, Pullin AS (2010) Urban greening to cool towns and cities: a systematic review of the empirical evidence. Landsc Urban Plan 97:147–155. doi:10.​1016/​j.​landurbplan.​2010.​05.​006 CrossRef
    Bruton MJ, Maron M, Levin N, McAlpine CA (2015) Testing the relevance of binary, mosaic and continuous landscape conceptualisations to reptiles in regenerating dryland landscapes. Landsc Ecol 30:715–728. doi:10.​1007/​s10980-015-0157-9 CrossRef
    Calvão T, Palmeirim JM (2011) A comparative evaluation of spectral vegetation indices for the estimation of biophysical characteristics of Mediterranean semi-deciduous shrub communities. Int J Remote Sens 32:2275–2296. doi:10.​1080/​0143116100369824​5 CrossRef
    Carmel Y, Kadmon R (1999) Effects of grazing and topography on long-term vegetation changes in a Mediterranean ecosystem in Israel. Plant Ecol 145:243–254. doi:10.​1023/​A:​1009872306093 CrossRef
    Danin A (1988) Flora and vegetation of Israel and adjacent areas. In: Tchernov E (ed) Yom-Tov, Yoram. The Zoogeography of Israel. W. Junk, Dordrecht, pp 129–158
    de Jong R, de Bruin S, de Wit A, Schaepman ME, Dent DL (2011) Analysis of monotonic greening and browning trends from global NDVI time-series. Remote Sens Environ 115:692–702. doi:10.​1016/​j.​rse.​2010.​10.​011 CrossRef
    de Jong R, Verbesselt J, Zeileis A, Schaepman ME (2013) Shifts in global vegetation activity trends. Remote Sens 5:1117–1133. doi:10.​3390/​rs5031117 CrossRef
    Diamond J, Bellwood P (2003) Farmers and their languages: the first expansions. Science 300:597–603. doi:10.​1126/​science.​1078208 CrossRef
    Dorman M, Svoray T, Perevolotsky A, Sarris D (2013a) Forest performance during two consecutive drought periods: diverging long-term trends and short-term responses along a climatic gradient. For Ecol Manage 310:1–9. doi:10.​1016/​j.​foreco.​2013.​08.​009 CrossRef
    Dorman M, Svoray T, Perevolotsky A (2013b) Homogenization in forest performance across an environmental gradient—the interplay between rainfall and topographic aspect. For Ecol Manage 310:256–266. doi:10.​1016/​j.​foreco.​2013.​08.​026 CrossRef
    Eastman J, Sangermano F, Ghimire B, Zhu H, Chen H, Neeti N, … Crema SC (2009) Seasonal trend analysis of image time series. Int J Remote Sens 30:2721–2726. doi:10.​1080/​0143116090275533​8
    Feitelson E (2013) The four eras of Israeli water policies. In: Water policy in Israel. Springer, Netherlands, pp 15–32
    Feitelson E, Selzer A, Almog R (2014) Water history facets of landscape change in Israel/Palestine 1920–1970: a question of scale and periodization. Water Hist 6:265–288. doi:10.​1007/​s12685-014-0104-8 CrossRef
    Fensholt R, Proud SR (2012) Evaluation of earth observation based global long term vegetation trends—comparing GIMMS and MODIS global NDVI time series. Remote Sens Environ 119:131–147. doi:10.​1016/​j.​rse.​2011.​12.​015 CrossRef
    Fensholt R, Langanke T, Rasmussen K, Reenberg A, Prince SD, Tucker C, … Wessels K (2012) Greenness in semi-arid areas across the globe 1981–2007—an earth observing satellite based analysis of trends and drivers. Remote Sens Environ 121:144–158. doi:10.​1016/​j.​rse.​2012.​01.​017
    Friedl MA, Sulla-Menashe D, Tan B, Schneider A, Ramankutty N, Sibley A, Huang X (2010) MODIS collection 5 global land cover: algorithm refinements and characterization of new datasets. Remote Sens Environ 114:168–182. doi:10.​1016/​j.​rse.​2009.​08.​016 CrossRef
    Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, … Snyder PK (2005) Global consequences of land use. Science 309:570–574. doi:10.​1126/​science.​1111772
    Fuller RA, Irvine KN, Devine-Wright P, Warren PH, Gaston KJ (2007) Psychological benefits of greenspace increase with biodiversity. Biol Lett 3:390–394. doi:10.​1098/​rsbl.​2007.​0149 CrossRef
    Gal Y, Hadas E (2013) Land allocation: agriculture vs. urban development in Israel. Land Use Policy 31:498–503. doi:10.​1016/​j.​landusepol.​2012.​08.​013 CrossRef
    Gitas I, Mitri G, Veraverbeke S, Polychronaki A (2012) Advances in remote sensing of post-fire vegetation recovery monitoring—a review. In: Fatoyinbo (ed) Remote sensing of biomass—principles and applications (InTech). Available at http://​www.​intechopen.​com/​books/​remote-sensing-of-biomass-principles-and-applications/​advances-in-remote-sensing-of-post-fire-monitoring-a-review (Verified 20 June 2013), pp 143–176
    Hansen MC, Potapov PV, Moore R, Hancher M, Turubanova SA, Tyukavina A, … Townshend JRG (2013) High-resolution global maps of 21st-century forest cover change. Science 342:850–853. doi:10.​1126/​science.​1244693
    Helman D, Mussery A, Lensky IM, Leu S (2014) Detecting changes in biomass productivity in a different land management regimes in drylands using satellite-derived vegetation index. Soil Use Manag 30:32–39. doi:10.​1111/​sum.​12099 CrossRef
    Heumann BW, Seaquist JW, Eklundh L, Jönsson P (2007) AVHRR derived phenological change in the Sahel and Soudan, Africa, 1982–2005. Remote Sens Environ 108:385–392. doi:10.​1016/​j.​rse.​2006.​11.​025 CrossRef
    Hinkley DV (1971) Inference about the change-point from cumulative sum tests. Biometrika 58:509–523. doi:10.​1093/​biomet/​58.​3.​509 CrossRef
    Hoaglin DC, Mosteller F, Tukey JW (2000) Understanding robust and exploratory data analysis, Wiley Classics Library Edition edn. Wiley, New York
    Israel Central Bureau of Statistics (2005) Statistical abstract of Israel 2014-No. 65. Central Bureau of Statistics, Jerusalem. Accessed 16 Nov 2014 . Available online at: http://​www.​cbs.​gov.​il/​reader/​shnatonhnew_​site.​htm
    Kadmon R, Harari-Kremer R (1999) Studying long-term vegetation dynamics using digital processing of historical aerial photographs. Remote Sens Environ 68:164–176. doi:10.​1016/​S0034-4257(98)00109-6 CrossRef
    Kaplan JO, Krumhardt KM, Ellis EC, Ruddiman WF, Lemmen C, Goldewijk KK (2010) Holocene carbon emissions as a result of anthropogenic land cover change. Holocene 21:775–791. doi:10.​1177/​0959683610386983​ CrossRef
    Karlinsky N (2000) California dreaming: adapting the California Model to the Jewish citrus industry in Palestine, 1917–1939. Israel Stud 5:24–40. doi:10.​1353/​is.​2000.​0013
    Klein Goldewijk K, Beusen A, Van Drecht G, De Vos M (2011) The HYDE 3.1 spatially explicit database of human-induced global land-use change over the past 12,000 years. Glob Ecol Biogeogr 20:73–86. doi:10.​1111/​j.​1466-8238.​2010.​00587.​x CrossRef
    Kressel GM, Ben-David J, Abu-Rabia K (1991) Changes in the land usage by the Negev Bedouin since the mid-19th century. Nomadic Peoples 28:28–55
    La Sorte FA, McKinney ML, Pyšek P (2007) Compositional similarity among urban floras within and across continents: biogeographical consequences of human-mediated biotic interchange. Glob Change Biol 13:913–921. doi:10.​1111/​j.​1365-2486.​2007.​01329.​x CrossRef
    Lambin EF, Ehrlich D (1997) Land-cover changes in sub-Saharan Africa (1982–1991): application of a change index based on remotely sensed surface temperature and vegetation indices at a continental scale. Remote Sens Environ 61:181–200. doi:10.​1016/​S0034-4257(97)00001-1 CrossRef
    Lambin EF, Turner BL, Geist HJ, Agbola SB, Angelsen A, Bruce JW, … Xu J (2001) The causes of land-use and land-cover change: moving beyond the myths. Glob Environ Change 11:261–269. doi:10.​1016/​S0959-3780(01)00007-3
    Levin N (2006) The Palestine Exploration Fund map (1871–1877) of the Holy Land as a tool for analyzing landscape changes: the coastal dunes of Israel as a case study. Cartogr J 43:45–67. doi:10.​1179/​000870406X93508 CrossRef
    Levin N, Ben-Dor E (2004) Monitoring sand dune stabilization along the coastal dunes of Ashdod-Nizanim, Israel, 1945–1999. J Arid Environ 58:335–355. doi:10.​1016/​j.​jaridenv.​2003.​08.​007 CrossRef
    Levin N, Duke Y (2012) High spatial resolution night-time light images for demographic and socio-economic studies. Remote Sens Environ 119:1–10. doi:10.​1016/​j.​rse.​2011.​12.​005 CrossRef
    Levin N, Heimowitz A (2012) Mapping spatial and temporal patterns of Mediterranean wildfires from MODIS. Remote Sens Environ 126:12–26. doi:10.​1016/​j.​rse.​2012.​08.​003 CrossRef
    Levin N, Saaroni H (1999) Fire weather in Israel—synoptic climatological analysis. GeoJournal 47:523–538. doi:10.​1023/​A:​1007087217249 CrossRef
    Levin N, Lahav H, Ramon U, Heller A, Nizry G, Tsoar A, Sagi Y (2007a) Landscape continuity analysis: a new approach to conservation planning in Israel. Landsc Urban Plan 79:53–64. doi:10.​1016/​j.​landurbplan.​2006.​04.​001 CrossRef
    Levin N, Lugassi R, Ramon U, Braun O, Ben-Dor E (2007b) Remote sensing as a tool for monitoring plasticulture in agricultural landscapes. Int J Remote Sens 28:183–202. doi:10.​1080/​0143116060065815​6 CrossRef
    Levin N, Elron E, Gasith A (2009) Decline of wetland ecosystems in the coastal plain of Israel during the 20th century: implications for wetland conservation and management. Landsc Urban Plan 92:220–232. doi:10.​1016/​j.​landurbplan.​2009.​05.​009 CrossRef
    Levy N (2012) State of the environment in Judea and Samaria. Municipal Associations for Environmental Quality in Judea and Samaria with Assistance of Green Now (in Hebrew). http://​www.​greennow.​org.​il/​doc/​%D7%93%D7%95%D7%97_​%D7%9E%D7%A6%D7%91_​%D7%99%D7%94%D7%95%D7%93%D7%94_​%D7%95%D7%A9%D7%95%D7%9E%D7%A8%D7%95%D7%9F_​%D7%A1%D7%95%D7%A4%D7%99.​pdf . Accessed 19 Nov 2014
    Levy I, Levin N, Schwartz JD, Kark JD (2015) Back-extrapolating a land use regression model for estimating past exposures to traffic-related air pollution. Environ Sci Technol 49:3603–3610. doi:10.​1021/​es505707e CrossRef
    Li X, Li D (2014) Can night-time light images play a role in evaluating the Syrian crisis? Int J Remote Sens 35:6648–6661. doi:10.​1080/​01431161.​2014.​971469 CrossRef
    Lipchin C (2007) Water, agriculture and Zionism: exploring the interface between policy and ideology. In: integrated water resources management and security in the middle east. Springer, Netherlands, pp 251–267. doi:10.​1007/​978-1-4020-5986-5_​11
    Los SO (2013) Analysis of trends in fused AVHRR and MODIS NDVI data for 1982–2006: indication for a CO2 fertilization effect in global vegetation. Glob Biogeochem Cycles 27:318–330. doi:10.​1002/​gbc.​20027 CrossRef
    Malak DA, Pausas JG (2006) Fire regime and post-fire Normalized Difference Vegetation Index changes in the eastern Iberian peninsula (Mediterranean basin). Int J Wildland Fire 15:407–413. doi:10.​1071/​WF05052 CrossRef
    McKinney ML (2006) Urbanization as a major cause of biotic homogenization. Biol Conserv 127:247–260. doi:10.​1016/​j.​biocon.​2005.​09.​005 CrossRef
    Messerli B, Grosjean M, Hofer T, Nunez L, Pfister C (2000) From nature-dominated to human-dominated environmental changes. Quatern Sci Rev 19:459–479. doi:10.​1016/​S0277-3791(99)00075-X CrossRef
    Meyer WB, Turner BL (1992) Human population growth and global land-use/cover change. Annu Rev Ecol Syst 23:39–61CrossRef
    Morin E (2011) To know what we cannot know: global mapping of minimal detectable absolute trends in annual precipitation. Water Resour Res 47:W07505. doi:10.​1029/​2010WR009798
    Neeti N, Eastman JR (2011) A contextual Mann–Kendall approach for the assessment of trend significance in image time series. Trans GIS 15:599–611. doi:10.​1111/​j.​1467-9671.​2011.​01280.​x CrossRef
    Neigh CS, Tucker CJ, Townshend JR (2008) North American vegetation dynamics observed with multi-resolution satellite data. Remote Sens Environ 112:1749–1772. doi:10.​1016/​j.​rse.​2007.​08.​018 CrossRef
    Orenstein DE, Hamburg SP (2010) Population and pavement: population growth and land development in Israel. Popul Environ 31:223–254. doi:10.​1007/​s11111-010-0102-4 CrossRef
    Paz S, Carmel Y, Jahshan F, Shoshany M (2011) Post-fire analysis of pre-fire mapping of fire-risk: a recent case study from Mt. Carmel (Israel). For Ecol Manage 262:1184–1188. doi:10.​1016/​j.​foreco.​2011.​06.​011 CrossRef
    Peleg N, Bartov M, Morin E (2014) CMIP5-predicted climate shifts over the East Mediterranean: implications for the transition region between Mediterranean and semi-arid climates. Int J Climatol. doi:10.​1002/​joc.​4114
    Perevolotsky A, Sheffer E (2009) Forest management in Israel—the ecological alternative. Israel J Plant Sci 57:35–48. doi:10.​1560/​IJPS.​57.​1-2.​35 CrossRef
    Rosenzweig C, Karoly D, Vicarelli M, Neofotis P, Wu Q, Casassa G, … Imeson A (2008) Attributing physical and biological impacts to anthropogenic climate change. Nature 453:353–357. doi:10.​1038/​nature06937
    Rozenstein O, Karnieli A (2011) Comparison of methods for land-use classification incorporating remote sensing and GIS inputs. Appl Geogr 31(2):533–544CrossRef
    Saltz D, Schmidt H, Rowen M, Karnieli A, Ward D, Schmidt I (1999) Assessing grazing impacts by remote sensing in hyper-arid environments. J Range Manag 52:500–507. doi:10.​2307/​4003778 CrossRef
    Samuels R, Harel M, Alpert P (2013) A new methodology for weighting high-resolution model simulations to project future rainfall in the Middle East. Clim Res 57:51–60. doi:10.​3354/​cr01147 CrossRef
    Schaffer G, Levin N (2014) Mapping human induced landscape changes in Israel between the end of the 19th century and the beginning of the 21th century. J Landsc Ecol 7:109–139. doi:10.​2478/​jlecol-2014-0012
    Schmidt H, Karnieli A (2000) Remote sensing of the seasonal variability of vegetation in a semi-arid environment. J Arid Environ 45:43–59. doi:10.​1006/​jare.​1999.​0607 CrossRef
    Shachar A (1998) Reshaping the map of Israel: a new national planning doctrine. Ann Am Acad Polit Soc Sci 555:209–218CrossRef
    Shoshany M (2000) Satellite remote sensing of natural Mediterranean vegetation: a review within an ecological context. Prog Phys Geogr 24:153–178. doi:10.​1177/​0309133300024002​01 CrossRef
    Siegal Z, Tsoar H, Karnieli A (2013) Effects of prolonged drought on the vegetation cover of sand dunes in the NW Negev Desert: field survey, remote sensing and conceptual modeling. Aeolian Res 9:161–173. doi:10.​1016/​j.​aeolia.​2013.​02.​002 CrossRef
    Singh A (1989) Digital change detection techniques using remotely-sensed data. Int J Remote Sens 10:989–1003. doi:10.​1080/​0143116890890393​9 CrossRef
    Sprintsin M, Karnieli A, Berliner P, Rotenberg E, Yakir D, Cohen S (2007) The effect of spatial resolution on the accuracy of leaf area index estimation for a forest planted in the desert transition zone. Remote Sens Environ 109:416–428. doi:10.​1016/​j.​rse.​2007.​01.​020 CrossRef
    Tal A (2007) To make a desert bloom: the Israeli agricultural adventure and the quest for sustainability. Agric Hist 81:228–257CrossRef
    Tessler N (2012) Documentation and analysis of wildfire regimes on Mount Carmel and the Jerusalem hills. Horiz Geogr 79(80):184–193
    Tielbörger K, Bilton MC, Metz J, Kigel J, Holzapfel C, Lebrija-Trejos E, Konsens I, Parag HA, Sternberg M (2014) Middle-Eastern plant communities tolerate 9 years of drought in a multi-site climate manipulation experiment. Nat Commun. doi:10.​1038/​ncomms6102
    Tsoar H (2008) Land use and its effect on the mobilization and stabilization of the north-western Negev sand dunes. In Arid Dune ecosystems. Springer, Berlin, Heidelberg, pp 79–89. doi:10.​1007/​978-3-540-75498-5_​6
    Tucker CJ (1979) Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens Environ 8:127–150. doi:10.​1016/​0034-4257(79)90013-0 CrossRef
    van Leeuwen WJ, Casady GM, Neary DG, Bautista S, Alloza JA, Carmel Y, … Orr BJ (2010) Monitoring post-wildfire vegetation response with remotely sensed time-series data in Spain, USA and Israel. Int J Wildland Fire 19:75–93. doi:10.​1071/​WF08078
    Veraverbeke S, Gitas I, Katagis T, Polychronaki A, Somers B, Goossens R (2012) Assessing post-fire vegetation recovery using red-near infrared vegetation indices: accounting for background and vegetation variability. ISPRS J Photogram Remote Sens 68:28–39. doi:10.​1016/​j.​isprsjprs.​2011.​12.​007 CrossRef
    Verburg PH, Neumann K, Nol L (2011) Challenges in using land use and land cover data for global change studies. Glob Change Biol 17:974–989. doi:10.​1111/​j.​1365-2486.​2010.​02307.​x CrossRef
    Volcani A, Karnieli A, Svoray T (2005) The use of remote sensing and GIS for spatio-temporal analysis of the physiological state of a semi-arid forest with respect to drought years. For Ecol Manage 215:239–250. doi:10.​1016/​j.​foreco.​2005.​05.​063 CrossRef
    Wessels KJ, Prince SD, Malherbe J, Small J, Frost PE, VanZyl D (2007) Can human-induced land degradation be distinguished from the effects of rainfall variability? A case study in South Africa. J Arid Environ 68:271–297. doi:10.​1016/​j.​jaridenv.​2006.​05.​015 CrossRef
    Wessels KJ, Van Den Bergh F, Scholes RJ (2012) Limits to detectability of land degradation by trend analysis of vegetation index data. Remote Sens Environ 125:10–22. doi:10.​1016/​j.​rse.​2012.​06.​022 CrossRef
    Wittenberg L, Malkinson D, Beeri O, Halutzy A, Tesler N (2007) Spatial and temporal patterns of vegetation recovery following sequences of forest fires in a Mediterranean landscape, Mt. Carmel Israel. Catena 71:76–83. doi:10.​1016/​j.​catena.​2006.​10.​007 CrossRef
    Wright CK, de Beurs KM, Henebry GM (2012) Combined analysis of land cover change and NDVI trends in the Northern Eurasian grain belt. Front Earth Sci 6:177–187. doi:10.​1007/​s11707-012-0327-x CrossRef
    Zeng FW, Collatz GJ, Pinzon JE, Ivanoff A (2013) Evaluating and quantifying the climate-driven interannual variability in global inventory modeling and mapping studies (GIMMS) normalized difference vegetation index (NDVI3 g) at global scales. Remote Sens 5:3918–3950. doi:10.​3390/​rs5083918 CrossRef
    Zhu Z, Bi J, Pan Y, Ganguly S, Anav A, Xu L, … Myneni RB (2013) Global data sets of vegetation leaf area index (LAI) 3 g and fraction of photosynthetically active radiation (FPAR) 3 g derived from Global Inventory Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI3g) for the period 1981–2011. Remote Sens 5:927–948. doi:10.​3390/​rs5020927
    Znobar - Oved Gobi (2009) The founding of new settlements in comparison to the expansion of existing settlements: examining the economic aspects. Prepared for the Israeli Ministry of Environment. http://​www.​sviva.​gov.​il/​infoservices/​reservoirinfo/​doclib2/​publications/​p0701-p0800/​p0793.​pdf . Accessed 18 Nov 2014 (in Hebrew)
    Ziv B, Saaroni H, Pargament R, Harpaz T, Alpert P (2013) Trends in rainfall regime over Israel, 1975–2010, and their relationship to large-scale variability. Reg Environ Change 14:1751–1764. doi:10.​1007/​s10113-013-0414-x CrossRef
  • 作者单位:Noam Levin (1)

    1. Department of Geography, Hebrew University of Jerusalem, Mt Scopus, 91905, Jerusalem, Israel
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Environment
    Geoecology and Natural Processes
    Geology
    Oceanography
    Geography
    Nature Conservation
    Regional Science
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1436-378X
文摘
Land cover and land use changes can result from climatic variability and climate changes, as well as from direct and indirect human drivers, such as growth in population and consumption. In this study, we aimed to examine whether major factors driving landscape changes (expressed in vegetation cover) in Israel, a densely populated country in the eastern Mediterranean Basin, are related to physical drivers or to human causes. To this end, we calculated statistical trends in the Normalized Difference Vegetation Index (NDVI—a spectral index representing vegetation cover) from a 14-year MODIS time series, between 2000 and 2014, to identify areas where vegetation cover has either increased or decreased. We chose 125 study areas where statistically significant changes in NDVI were found and used time series of monthly rainfall, Landsat images, Google Earth images and environmental GIS layers to identify the type and cause of landscape changes. The two most common general classes driving land cover changes were agricultural (56 of 125; expansion of agricultural areas or change in agricultural crops) and urban (28 of 125; urban expansion or urban greening). Other important drivers of landscape changes included forestry, woody encroachment, wildfire dynamics and water management. Climate variability was found to explain landscape changes in only 3 of the 125 study areas, all located in the transition zone between the desert and the Mediterranean climate regions of Israel, where a decrease in rainfall led to a decrease in NDVI values. NDVI as an indicator of landscape changes is not effective to detect changes in non-photosynthetic vegetation or to monitor changes in forests where leaf area index values are high. However, we show here that even in a highly heterogeneous and densely populated country, MODIS-derived time series of NDVI are informative to identify landscape change processes.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700