SUPG finite element method based on penalty function for lid-driven cavity flow up to \(Re =
详细信息    查看全文
  • 作者:Da-Guo Wang ; Qing-Xiang Shui
  • 关键词:Streamline upwind/Petrov–Galerkin (SUPG) finite element method ; Lid ; driven cavity flow ; Penalty function method ; High Reynolds number
  • 刊名:Acta Mechanica Solida Sinica
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:32
  • 期:1
  • 页码:54-63
  • 全文大小:1,348 KB
  • 参考文献:1.Bruneau, C.H., Saad, M.: The 2D lid-driven cavity problem revisited. Comput. Fluids 35, 326–348 (2006)CrossRef MATH
    2.Poliashenko, M., Aidun, C.K.: A direct method for computation of simple bifurcations. J. Comput. Phys. 121, 246–260 (1995)CrossRef MathSciNet MATH
    3.Peng, Y.F., Shiau, Y.H., Hwang, R.R.: Transition in a 2-D lid-driven cavity flow. Comput. Fluids 32, 337–352 (2003)CrossRef MATH
    4.Shui, Q.X., Wang, D.G.: Numerical simulation for Navier-Stokes equations by projection/characreistic-based operator-splitting finite element method. Chin. J. Theor. Appl. Mech. 46, 369–381 (2014)
    5.Barragy, E., Carey, G.F.: Stream function-vorticity driven cavity solutions using p finite elements. Comput. Fluids 26, 453–468 (1997)CrossRef MATH
    6.Hachem, E., Rivaux, B., Kloczko, T., et al.: Stabilized finite element method for incompressible flows with high Reynolds number. J. Comput. Phys. 229, 8643–8665 (2010)CrossRef MathSciNet MATH
    7.Bassi, F., Crivellini, A., Di Pietro, D.A., et al.: An artificial compressibility flux for the discontinuous Galerkin solution of the incompressible Navier-Stokes equations. J. Comput. Phys 218, 794–815 (2006)CrossRef MathSciNet MATH
    8.Botti, L., Di Pietro, D.A.: A pressure-correction scheme for convection-dominated incompressible flows with discontinuous velocity and continuous pressure. J. Comput. Phys. 230, 572–585 (2011)CrossRef MathSciNet MATH
    9.Brooks, A.N., Hughes, T.J.R.: Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 32, 199–259 (1982)CrossRef MathSciNet MATH
    10.Babuška, I.: The finite element method with penalty. Math. Comput. 27, 221–228 (1973)CrossRef MATH
    11.Tezduyar, T.E., Liou, J., Ganjoo, D.K.: Petrov–Galerkin methods on multiply-connected domains for the vorticity-stream function formulation of the incompressible Navier-Stokes equations. J. Numer. Methods Fluids 8, 1269–1290 (1988)
    12.Huang, C., Zhou, D., Bao, Y.: A semi-implicit three-step method based on SUPG finite element formulation for flow in lid driven cavities with different geometries. J. Zhejiang Univ. Sci. A 12, 33–45 (2011)CrossRef
    13.Belytschko, T., Liu, W.K., Moran, B., et al.: Nonlinear Finite Elements for Continua and Structures. John Wiley & Sons, Chichester (2013)MATH
    14.Gunzburger, M.D.: Finite Element Methods for Viscous Incompressible Flows. Academic Press, San Diego (1989)MATH
    15.Singh, A., Singh, I.V., Prakash, R.: Numerical analysis of fluid squeezed between two parallel plates by meshless method. Comput. Fluids 36, 1460–1480 (2007)CrossRef MathSciNet MATH
    16.Nithiarasu, P.: An efficient artificial compressibility (AC) scheme based on the characteristic based split (CBS) method for incompressible flows. Int. J. Numer. Methods Eng. 56, 1815–1845 (2003)CrossRef MATH
    17.Ghia, U., Ghia, K.N., Shin, C.T.: High-Re solutions for incompressible flow using the Navier–Stokes equations and a multigrid method. J.Comput. Phys. 48, 387–411 (1982)CrossRef MATH
    18.Wahba, E.M.: Steady flow simulations inside a driven cavity up to Reynolds number 35,000. Comput. Fluids 66, 85–97 (2012)CrossRef MathSciNet
    19.Erturk, E., Corke, T.C., Gökçöl, C.: Numerical solutions of 2-D steady incompressible driven cavity flow at high Reynolds numbers. Int. J. Numer. Methods Fluids 48, 747–774 (2005)CrossRef MATH
    20.Erturk, E.: Discussions on driven cavity flow. Int. J. Numer. Methods Fluids 60, 275–294 (2009)CrossRef MathSciNet MATH
    21.Gravemeier, V., Wall, W.A., Ramm, E.: A three-level finite element method for the instationary incompressible Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 193, 1323–1366 (2004)CrossRef MathSciNet MATH
  • 作者单位:Da-Guo Wang (1)
    Qing-Xiang Shui (1)

    1. School of Environment and Resources, Southwest University of Science and Technology, Mianyang, 621010, China
  • 刊物类别:Engineering
  • 刊物主题:Theoretical and Applied Mechanics
    Mechanics, Fluids and Thermodynamics
    Engineering Fluid Dynamics
    Numerical and Computational Methods in Engineering
    Chinese Library of Science
  • 出版者:The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of
  • ISSN:1614-3116
文摘
A streamline upwind/Petrov–Galerkin (SUPG) finite element method based on a penalty function is proposed for steady incompressible Navier–Stokes equations. The SUPG stabilization technique is employed for the formulation of momentum equations. Using the penalty function method, the continuity equation is simplified and the pressure of the momentum equations is eliminated. The lid-driven cavity flow problem is solved using the present model. It is shown that steady flow simulations are computable up to \(Re = 27500\), and the present results agree well with previous solutions. Tabulated results for the properties of the primary vortex are also provided for benchmarking purposes.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700