Chitosan Degradation Products Promote Nerve Regeneration by Stimulating Schwann Cell Proliferation via miR-27a/FOXO1 Axis
详细信息    查看全文
  • 作者:Yongjun Wang ; Yahong Zhao ; Cheng Sun ; Wen Hu ; Jing Zhao…
  • 关键词:Biomaterials ; Polysaccharides ; miRNA ; Oligosaccharides ; Regeneration
  • 刊名:Molecular Neurobiology
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:53
  • 期:1
  • 页码:28-39
  • 全文大小:4,731 KB
  • 参考文献:1.Gu XS, Ding F, Yang YM, Liu J (2011) Construction of tissue engineered nerve grafts and their application in peripheral nerve regeneration. Prog Neurobiol 93(2):204–230CrossRef PubMed
    2.Wang X, Hu W, Cao Y, Yao J, Wu J, Gu X (2005) Dog sciatic nerve regeneration across a 30-mm defect bridged by a chitosan/PGA artificial nerve graft. Brain 128(Pt 8):1897–1910CrossRef PubMed
    3.Fan W, Gu J, Hu W, Deng A, Ma Y, Liu J, Ding F, Gu X (2008) Repairing a 35-mm-long median nerve defect with a chitosan/PGA artificial nerve graft in the human: a case study. Microsurgery 28(4):238–242CrossRef PubMed
    4.Yuan Y, Zhang P, Yang Y, Wang X, Gu X (2004) The interaction of Schwann cells with chitosan membranes and fibers in vitro. Biomaterials 25(18):4273–4278CrossRef PubMed
    5.Zhang L, Dou S, Li Y, Yuan Y, Ji Y, Wang Y, Yang Y (2013) Degradation and compatibility behaviors of poly(glycolic acid) grafted chitosan. Mater Sci Eng C Mater Biol Appl 33(5):2626–2631CrossRef PubMed
    6.Prashanth KVH, Tharanathan RN (2005) Depolymerized products of chitosan as potent inhibitors of tumor-induced angiogenesis. Bba-Gen Subj 1722(1):22–29CrossRef
    7.Jiang M, Zhuge X, Yang Y, Gu X, Ding F (2009) The promotion of peripheral nerve regeneration by chitooligosaccharides in the rat nerve crush injury model. Neurosci Lett 454(3):239–243CrossRef PubMed
    8.Joodi G, Ansari N, Khodagholi F (2011) Chitooligosaccharide-mediated neuroprotection is associated with modulation of Hsps expression and reduction of MAPK phosphorylation. Int J Biol Macromol 48(5):726–735CrossRef PubMed
    9.Yang YM, Wu J, Wang XD, Liu J, Ding F, Gu XS (2009) Fabrication and evaluation of chitin-based nerve guidance conduits used to promote peripheral nerve regeneration. Adv Eng Mater 11(11):B209–B218CrossRef
    10.Brockes JP, Fields KL, Raff MC (1979) Studies on cultured rat Schwann cells. I. Establishment of purified populations from cultures of peripheral nerve. Brain Res 165(1):105–118CrossRef PubMed
    11.Scheib J, Hoke A (2013) Advances in peripheral nerve regeneration. Nat Rev Neurol 9(12):668–676CrossRef PubMed
    12.Glenn TD, Talbot WS (2013) Signals regulating myelination in peripheral nerves and the Schwann cell response to injury. Curr Opin Neurobiol 23(6):1041–1048CrossRef PubMed
    13.Jeong HW, Cho SY, Kim S, Shin ES, Kim JM, Song MJ, Park PJ, Sohn JH, Park H, Seo DB, Kim WG, Lee SJ (2012) Chitooligosaccharide induces mitochondrial biogenesis and increases exercise endurance through the activation of Sirt1 and AMPK in rats. PLoS ONE 7(7)
    14.Ohara N, Hayashi Y, Yamada S, Kim SK, Matsunaga T, Yanagiguchi K, Ikeda T (2004) Early gene expression analyzed by cDNA microarray and RT-PCR in osteoblasts cultured with water-soluble and low molecular chitooligosaccharide. Biomaterials 25(10):1749–1754CrossRef PubMed
    15.Gokey NG, Srinivasan R, Lopez-Anido C, Krueger C, Svaren J (2012) Developmental regulation of microRNA expression in Schwann cells. Mol Cell Biol 32(2):558–568CrossRef PubMed PubMedCentral
    16.Yu B, Qian T, Wang Y, Zhou S, Ding G, Ding F, Gu X (2012) miR-182 inhibits Schwann cell proliferation and migration by targeting FGF9 and NTM, respectively at an early stage following sciatic nerve injury. Nucleic Acids Res 40(20):10356–10365CrossRef PubMed PubMedCentral
    17.Dhadialla PS, Ohiorhenuan IE, Cohen A, Strickland S (2009) Maximum-entropy network analysis reveals a role for tumor necrosis factor in peripheral nerve development and function. Proc Natl Acad Sci U S A 106(30):12494–12499CrossRef PubMed PubMedCentral
    18.Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. The gene ontology consortium. Nat Genet 25(1):25–29CrossRef PubMed PubMedCentral
    19.Yang Y, Liu M, Gu Y, Lin S, Ding F, Gu X (2009) Effect of chitooligosaccharide on neuronal differentiation of PC-12 cells. Cell Biol Int 33(3):352–356CrossRef PubMed
    20.Yang YM, Shu RG, Shao J, Xu GF, Gu XX (2006) Radical scavenging activity of chitooligosaccharide with different molecular weights. Eur Food Res Technol 222(1–2):36–40CrossRef
    21.Mantuano E, Inoue G, Li X, Takahashi K, Gaultier A, Gonias SL, Campana WM (2008) The hemopexin domain of matrix metalloproteinase-9 activates cell signaling and promotes migration of schwann cells by binding to low-density lipoprotein receptor-related protein. J Neurosci 28(45):11571–11582CrossRef PubMed
    22.Ramoni MF, Sebastiani P, Kohane IS (2002) Cluster analysis of gene expression dynamics. Proc Natl Acad Sci U S A 99(14):9121–9126CrossRef PubMed PubMedCentral
    23.Freier T, Montenegro R, Shan Koh H, Shoichet MS (2005) Chitin-based tubes for tissue engineering in the nervous system. Biomaterials 26(22):4624–4632CrossRef PubMed
    24.Hirano S, Tsuchida H, Nagao N (1989) N-Acetylation in chitosan and the rate of its enzymic hydrolysis. Biomaterials 10(8):574–576CrossRef PubMed
    25.Thanou M, Verhoef JC, Junginger HE (2001) Oral drug absorption enhancement by chitosan and its derivatives. Adv Drug Deliv Rev 52(2):117–126CrossRef PubMed
    26.Carver JP (1993) Oligosaccharides: how can flexible molecules act as signals? Pure Appl Chem 65(4):763–770CrossRef
    27.Koeller KM, Wong CH (2000) Emerging themes in medicinal glycoscience. Nat Biotechnol 18(8):835–841CrossRef PubMed
    28.Macmillan D, Daines AM (2003) Recent developments in the synthesis and discovery of oligosaccharides and glycoconjugates for the treatment of disease. Curr Med Chem 10(24):2733–2773CrossRef PubMed
    29.Seeberger PH, Werz DB (2007) Synthesis and medical applications of oligosaccharides. Nature 446(7139):1046–1051CrossRef PubMed
    30.You Y, Park WH, Ko BM, Min BM (2004) Effects of PVA sponge containing chitooligosaccharide in the early stage of wound healing. J Mater Sci Mater Med 15(3):297–301CrossRef PubMed
    31.Suzuki K, Mikami T, Okawa Y, Tokoro A, Suzuki S, Suzuki M (1986) Antitumor effect of hexa-N-acetylchitohexaose and chitohexaose. Carbohydr Res 151:403–408CrossRef PubMed
    32.Chen ZL, Yu WM, Strickland S (2007) Peripheral regeneration. Annu Rev Neurosci 30:209–233CrossRef PubMed
    33.Guenard V, Kleitman N, Morrissey TK, Bunge RP, Aebischer P (1992) Syngeneic Schwann cells derived from adult nerves seeded in semipermeable guidance channels enhance peripheral nerve regeneration. J Neurosci 12(9):3310–3320PubMed
    34.Mosahebi A, Woodward B, Wiberg M, Martin R, Terenghi G (2001) Retroviral labeling of Schwann cells: in vitro characterization and in vivo transplantation to improve peripheral nerve regeneration. Glia 34(1):8–17CrossRef PubMed
    35.Yu B, Zhou S, Wang Y, Ding G, Ding F, Gu X (2011) Profile of microRNAs following rat sciatic nerve injury by deep sequencing: implication for mechanisms of nerve regeneration. PLoS ONE 6(9):e24612CrossRef PubMed PubMedCentral
    36.Zhang Z, Liu S, Shi R, Zhao G (2011) miR-27 promotes human gastric cancer cell metastasis by inducing epithelial-to-mesenchymal transition. Cancer Genet 204(9):486–491CrossRef PubMed
    37.Kang T, Lu W, Xu W, Anderson L, Bacanamwo M, Thompson W, Chen YE, Liu D (2013) MicroRNA-27 (miR-27) targets prohibitin and impairs adipocyte differentiation and mitochondrial function in human adipose-derived stem cells. J Biol Chem 288(48):34394–34402CrossRef PubMed PubMedCentral
    38.Guttilla IK, White BA (2009) Coordinate regulation of FOXO1 by miR-27a, miR-96, and miR-182 in breast cancer cells. J Biol Chem 284(35):23204–23216CrossRef PubMed PubMedCentral
    39.Gross DN, van den Heuvel AP, Birnbaum MJ (2008) The role of FoxO in the regulation of metabolism. Oncogene 27(16):2320–2336CrossRef PubMed
    40.Lin Q, Gao ZG, Alarcon RM, Ye JP, Yun Z (2009) A role of miR-27 in the regulation of adipogenesis. FEBS J 276(8):2348–2358CrossRef PubMed
    41.Zhang X, Gan L, Pan H, Guo S, He X, Olson ST, Mesecar A, Adam S, Unterman TG (2002) Phosphorylation of serine 256 suppresses transactivation by FKHR (FOXO1) by multiple mechanisms. Direct and indirect effects on nuclear/cytoplasmic shuttling and DNA binding. J Biol Chem 277(47):45276–45284CrossRef PubMed
    42.Perrot V, Rechler MM (2005) The coactivator p300 directly acetylates the Forkhead transcription factor Foxo1 and stimulates Foxo1-induced transcription. Mol Endocrinol 19(9):2283–2298CrossRef PubMed
    43.Huang H, Regan KM, Wang F, Wang DP, Smith DI, van Deursen JMA, Tindall DJ (2005) Skp2 inhibits FOX01 in tumor suppression through ubiquitin-mediated degradation. Proc Natl Acad Sci U S A 102(5):1649–1654CrossRef PubMed PubMedCentral
    44.Goto T, Takano M, Albergaria A, Briese J, Pomeranz KM, Cloke B, Fusi L, Feroze-Zaidi F, Maywald N, Sajin M, Dina RE, Ishihara O, Takeda S, Lam EW, Bamberger AM, Ghaem-Maghami S, Brosens JJ (2008) Mechanism and functional consequences of loss of FOXO1 expression in endometrioid endometrial cancer cells. Oncogene 27(1):9–19CrossRef PubMed
    45.Mertens-Talcott SU, Chintharlapalli S, Li X, Safe S (2007) The oncogenic microRNA-27a targets genes that regulate specificity protein transcription factors and the G2-M checkpoint in MDA-MB-231 breast cancer cells. Cancer Res 67(22):11001–11011CrossRef PubMed
    46.Takano M, Lu Z, Goto T, Fusi L, Higham J, Francis J, Withey A, Hardt J, Cloke B, Stavropoulou AV, Ishihara O, Lam EWF, Unterman TG, Brosens JJ, Kim JJ (2007) Transcriptional cross talk between the forkhead transcription factor forkhead box O1A and the progesterone receptor coordinates cell cycle regulation and differentiation in human endometrial stromal cells. Mol Endocrinol 21(10):2334–2349CrossRef PubMed
  • 作者单位:Yongjun Wang (1) (2)
    Yahong Zhao (1) (2)
    Cheng Sun (1) (2)
    Wen Hu (1) (2)
    Jing Zhao (1) (2)
    Guicai Li (1) (2)
    Luzhong Zhang (1) (2)
    Mei Liu (1) (2)
    Yan Liu (1) (2)
    Fei Ding (1) (2)
    Yumin Yang (1) (2)
    Xiaosong Gu (1) (2)

    1. Key Laboratory of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, 226001, People’s Republic of China
    2. Co-innovation Center of Neuroregeneration, Nantong, 226001, Jiangsu Province, People’s Republic of China
  • 刊物主题:Neurosciences; Neurobiology; Cell Biology; Neurology;
  • 出版者:Springer US
  • ISSN:1559-1182
文摘
Natural polysaccharides are biomaterials widely used for constructing scaffolds in tissue engineering. While natural polysaccharides have been shown to robustly promote tissue regeneration, the underlying molecular mechanism remains largely unknown. Here, we show that chitooligosaccharides (COS), the intermediate products of chitosan degradation, stimulate peripheral nerve regeneration in rats. Our experiment also shows that COS stimulate the proliferation of Schwann cells (SCs) during nerve regeneration. By analyzing the transcriptome and gene regulatory network, we identified the miR-27a/FOXO1 axis as the main signaling pathway for mediating the proliferative effects of COS on SCs. COS increase the expression level of miR-27a and cause a reduction of FOXO1, which subsequently accelerates the cell cycle and stimulates SC proliferation to stimulate nerve regeneration. These findings define a basic pathway for oligosaccharides-mediated cell proliferation and reveal a novel aspect of polysaccharide biomaterials in tissue engineering.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700