A Theoretical Method for Fracture Resistance of Shear-Strengthened RC Beams with FRP
详细信息    查看全文
  • 作者:Shahriar Shahbazpanahi (1)
    Abang Abdullah Abang Ali (2)
    Farah Nora Aznieta (1)
    Alaleh Kamgar (1)
    Nima Farzadnia (2)
  • 关键词:Fictitious crack ; FPZ ; FRP ; Shear strengthening
  • 刊名:Arabian Journal for Science and Engineering
  • 出版年:2014
  • 出版时间:May 2014
  • 年:2014
  • 卷:39
  • 期:5
  • 页码:3591-3597
  • 全文大小:
  • 参考文献:1. Benachour A., Benyoucef S., Tounsi A., Adda bedia E.A.: Interfacial stress analysis of steel beams reinforced with bonded prestressed FRP plate. Eng. Struct. 30(11), 3305鈥?315 (2008) CrossRef
    2. Wu Y., Zhoub Z., Yangb Q., Ch W.: On shear bond strength of FRP-concrete structures. Eng. Struct. 32(3), 897鈥?05 (2010) CrossRef
    3. Triantafillou T.C.: Shear strengthening of reinforced concrete beams using epoxy-bonded FRP composites. ACI Struct. J. 95(20), 107鈥?15 (1998)
    4. Matthys, S.; Triantafillou, T.: Shear and torsion strengthening with externally bonded FRP reinforcement. In: Proceedings of the International Workshop on Composite in Construction, Capri, Italy, 20鈥?1 (2001)
    5. Colotti V., Spadea G., Swamy R.: Analytical model to evaluate failure behavior of plated reinforced concrete beams strengthened for shear. ACI Struct. J. 101(6), 755鈥?64 (2004)
    6. Mosallam A., Banerjee S.: Shear enhancement of reinforced concrete beams strengthened with FRP composite laminates. Compos. Part B 38(6), 781鈥?93 (2007) CrossRef
    7. Tounsi A., Hassaine Daouadji T., Benyoucef S., Adda bedia E.A.: Interfacial stresses in FRP-plated RC beams: effect of adherend shear deformations. Int. J. Adhes. Adhes. 29(4), 343鈥?51 (2009) CrossRef
    8. Chena G.M., Chen J.F., Teng J.G.: On the finite element modelling of RC beams shear-strengthened with FRP. Constr. Build. Mater. 32, 13鈥?6 (2012) CrossRef
    9. Bukhari I., Vollum R., Ahmad S., Sagaseta J.: Shear strengthening of short span reinforced concrete beams with CFRP sheets., Arab. J. Sci. Eng. 38(3), 523鈥?36 (2013)
    10. Canadian Standards Association Standards, A23.3-04: Design of Concrete Structures., Ontario, Canada (2004)
    11. Triantafillou, T.; Matthys, S.; Taerwe, L.: Design of concrete members strengthened with externally bonded FRP reinforcement. In: Proc. FRPRCS-5, Cambridge, pp. 157鈥?66 (2001)
    12. Zou X.W.P.: Flexural behavior and deformability of fiber reinforced polymer prestressed concrete beams. J. Compos. Constr. 7(4), 275鈥?84 (2003) CrossRef
    13. Wu Z.J., Bailey C.: Fracture resistance of a cracked concrete beam post-strengthened with FRP sheets. Int. J. Fract. 135, 35鈥?9 (2005) CrossRef
    14. Esfahani, M.R.: Fracture Mechanics of Concrete. Tehran Polytechnic press, Tehran (2007)
    15. Hillerborg A., Modeer M., Petersson P.E.: Analysis of crack formation and crack growth in concrete by means of mechanics and finite element. Cement Concr. Res. 6, 773鈥?82 (1976) CrossRef
    16. Shi, Z.: Crack Analysis in Stuctural Concrete, Theory and Aplication. Butterworth-Heinemann, Burlington (2009)
    17. Kumar S., Barai S.: Concrete Fracture Models and Applications. Springer, Berlin (2011) CrossRef
    18. Xie M., Gersle W.H.: Energy-based cohesive crack propagation modeling. J. Eng. Mech. ASCE 121(12), 1349鈥?458 (1995) CrossRef
    19. Wu J.M., Davies Z.J.: Mechanical analysis of a cracked beam reinforced with an external FRP plate. Compos. Struct. 62(2), 139鈥?43 (2003) CrossRef
    20. Wu Z.J., Ye J.Q.: Strength and fracture resistance of FRP reinforced concrete flexural members. Cement Concrete Compos. 25(2), 253鈥?61 (2003) CrossRef
    21. Carpinteri A., Carmona J., Ventura G.: Failure mode transitions in reinforced concrete beams-part 2: experimental tests. Struct. J. 108(3), 286鈥?93 (2011)
    22. Chen J., Teng J.: Shear capacity of fiber-reinforced polymer-strengthened reinforced concrete beams: fiber reinforced polymer rupture. J. Struct. Eng. 129(5), 615鈥?25 (2003) CrossRef
    23. ACI Committee, 318鈥?8: Building Code Requirements for Structural Concrete. American Concrete Institute Farmington Hills Michigan, USA (2008)
    24. Jefferson D.A.: Tripartite cohesive crack model. J. Eng. Mech. 128(6), 644鈥?53 (2002) CrossRef
    25. ACI Committee, 440.2R-02: Guide for design and construction of externally bonded FRP systems for strengthening concrete structures. In: American Concrete Institute Farmington Hills Michigan, USA (2002)
    26. Nakaba K., Kanakubo T., Furuta T., Yoshizawa H.: Bond behavior between fiber reinforced polymer laminates and concrete. ACI Struct. J. 98(3), 359鈥?67 (2001)
    27. Guryao, W.: Study of Mode II Fracture of Rock and its Engineering Application. Centeral South Univercity of Technology, Changsha (1996)
    28. Tada, H.; Paris, P.; Irwin, G.: The Stress Analysis of Cracks Handbook. Del research corporation, Paris (1985)
    29. Mahjuob, H.; Barr, B.: Imapct shear strength of FRC material. In: Fibre Reinforced Cement and Concrete, Proceedings of the fourth RILEM International Symposium, pp. 209鈥?31 (1992)
    30. Zhang D., Wu K.: Fracture process zone of notched three-point-bending concrete beams. Cement Concr. Res. 29, 1887鈥?892 (1999) CrossRef
    31. Wua Z., Rong H., Zheng J., Xu F.: An experimental investigation on the FPZ properties in concrete using digital image correlation technique. Eng. Fract. Mech. 78(17), 2978鈥?990 (2011) CrossRef
  • 作者单位:Shahriar Shahbazpanahi (1)
    Abang Abdullah Abang Ali (2)
    Farah Nora Aznieta (1)
    Alaleh Kamgar (1)
    Nima Farzadnia (2)

    1. Department of Civil Engineering, University Putra Malaysia, Selangor, Malaysia
    2. Housing Research Center, University Putra Malaysia, Selangor, Malaysia
文摘
So far, the conventional, theoretical, and numerical analyses in fracture mechanics have been applied to study concrete flexural beams, which are strengthened using fiber-reinforced polymer (FRP) composite sheets. However, there is still little knowledge about the shear capacity of a side face FRP-strengthened cracked beam. A theoretical analysis is herein presented to obtain the fracture resistance in a four-point reinforced concrete beam, with two inclined initial notch on the supports, which is strengthened with side face FRP strips. The fracture process zone (FPZ) at the head of the crack is used as the base of a fictitious crack to obtain shear stress distribution in the cross section of the beam. Based on equilibrium equation in the beam notch cross section, the change of shear force against the FPZ length and the tensile forces due to FRP are obtained. Then, in double notch four-point beam, Mode II of the stress intensity factor due to the external load is determined. Finally, the relationship between the shear capacity and the FPZ length is used to express the fracture resistance as a function of the FPZ length. It is observed that the FPZ and the FRP sheets have positive effects on the fracture toughness and they play important roles in preventing the propagation of shear cracks.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700