Temporal correlation between two channels EEG of bipolar lead in the head midline is associated with sleep-wake stages
详细信息    查看全文
  • 作者:Yanjun Li ; Xiaoying Tang ; Zhi Xu…
  • 关键词:EEG ; Sleep stage classification ; Sleep scoring ; Sleep ; wake classification ; Correlation coefficient ; Temporal correlation ; Synchronization
  • 刊名:Australasian Physical & Engineering Sciences in Medicine
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:39
  • 期:1
  • 页码:147-155
  • 全文大小:1,097 KB
  • 参考文献:1.Lin J (2015) Effects of radio-frequency exposure on synchronous brain electrical activity in humans. IEEE Microw Mag 16(8):12–20CrossRef
    2.Jalili M, Barzegaran E, Knyazeva MG (2014) Synchronization of EEG: bivariate and multivariate measures. IEEE Trans Neur Sys Reh 22(2):212–221CrossRef
    3.Hu S, Stead M, Dai Q et al (2010) On the recording reference contribution to EEG correlation, phase synchrony, and coherence [J]. IEEE Trans Syst Man Cy-S 40(5):1294–1304CrossRef
    4.Lee YY, Yang CY (2014) Utilizing the extent of theta-gamma synchronization to estimate visuospatial memory ability. Australas Phys Eng Sci Med 37(4):665–672CrossRef PubMed
    5.Ferri R, Rundo F, Bruni O et al (2005) Dynamics of the EEG slow-wave synchronization during sleep. Clin Neurophysiol 116(12):2783–2795CrossRef PubMed
    6.Abeyratne UR, Swarnkar V, Hukins C et al (2010) Interhemispheric asynchrony correlates with severity of respiratory disturbance index in patients with sleep apnea. IEEE T Bio-Med Eng 57(12):2947–2955CrossRef
    7.Iber C, Ancoli-Israel S, Chesson A et al (2007) The AASM manual for the scoring of sleep and associated events: rules, terminology and technical specifications. Westbrook Corporate Center AASM, USA, Westchester, pp 19–37
    8.Swarnkar V, Abeyratne UR, Hukins C (2007) Inter-hemispheric asynchrony of the brain during events of apnoea and EEG arousals. Physiol Meas 28(8):869–880CrossRef PubMed
    9.Sauvet F, Bougard C, Coroenne M et al (2014) In-flight automatic detection of vigilance states using a single EEG channel. IEEE Trans Bio-Med Eng 61(12):2840–2847CrossRef
    10.Goldberger AL, Amaral LAN, Glass L et al (2000) Physiobank, physiotoolkit, and physionet: components of a new research resource for complex physiologic signals. Circulation 101(23):e215–e220CrossRef PubMed
    11.Li YJ, Yan H, Xu Z et al (2013) Analysis of the changes in Photoplethysmogram induced by exercise stress. J Med Imag Health In 3(3):347–355
    12.Amin HU, Malik AS, Ahmad RF et al (2015) Feature extraction and classification for EEG signals using wavelet transform and machine learning techniques. Australas Phys Eng Sci Med 38(1):139–149CrossRef PubMed
    13.Adnane M, Jiang ZW, Yan ZH (2012) Sleep-wake stages classification and sleep efficiency estimation using single-lead Electrocardiogram. Expert Syst Appl 39(1):1401–1413CrossRef
    14.Virkkala J, Toppila J, Maasilta P et al (2014) Electro-oculography-based detection of sleep-wake in sleep apnea patients. Sleep Breath 19(3):785–789CrossRef PubMed
    15.Willemen T, Van-Deun D, Verhaert V et al (2014) An evaluation of cardiorespiratory and movement features with respect to sleep-stage classification. IEEE J Bio-Med Heal Inf 18(2):661–669CrossRef
    16.Karlen W, Floreano D (2011) Adaptive sleep-wake discrimination for wearable devices. IEEE Trans Bio-Med Eng 58(4):920–926CrossRef
    17.Khalighi S, Sousa T, Pires G et al (2013) Automatic sleep staging: a computer assisted approach for optimal combination of features and Polysomnographic channels. Expert Syst Appl 40(17):7046–7059CrossRef
    18.Choi BH, Seo JW, Choi JM (2007) Non-constraining sleep/wake monitoring system using bed Actigraphy. Med Bio Eng Comput 45(1):107–114CrossRef
    19.Jung DW, Hwang SH, Yoon HN et al (2014) Nocturnal awakening and sleep efficiency estimation using unobtrusively measured Ballistocardiogram. IEEE Trans Bio-Med Eng 61(1):131–138CrossRef
    20.Zhu G, Li Y, Wen P (2014) Analysis and classification of sleep stages based on difference visibility graphs from a single-channel EEG signal. IEEE J Bio-Med Heal Inf 18(6):1813–1821CrossRef
    21.Srinivasan R, Nunez PL, Silberstein RB (1998) Spatial filtering and neocortical dynamics: estimates of EEG Coherence. IEEE Trans Bio-Med Eng 45(7):814–826CrossRef
  • 作者单位:Yanjun Li (1) (2)
    Xiaoying Tang (1)
    Zhi Xu (1) (2)
    Weifeng Liu (1)
    Jing Li (1)

    1. School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
    2. State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China
  • 刊物主题:Biomedicine general; Biophysics and Biological Physics; Medical and Radiation Physics; Biomedical Engineering;
  • 出版者:Springer Netherlands
  • ISSN:1879-5447
文摘
Whether the temporal correlation between inter-leads Electroencephalogram (EEG) that located on the boundary between left and right brain hemispheres is associated with sleep stages or not is still unknown. The purpose of this paper is to evaluate the role of correlation coefficients between EEG leads Fpz-Cz and Pz-Oz for automatic classification of sleep stages. A total number of 39 EEG recordings (about 20 h each) were selected from the expanded sleep database in European data format for temporal correlation analysis. Original waveform of EEG was decomposed into sub-bands δ (1–4 Hz), θ (4–8 Hz), α (8–13 Hz) and β (13–30 Hz). The correlation coefficient between original EEG leads Fpz-Cz and Pz-Oz within frequency band 0.5–30 Hz was defined as r EEG and was calculated every 30 s, while that between the two leads EEG in sub-bands δ, θ, α and β were defined as r δ, r θ, r α and r β, respectively. Classification of wakefulness and sleep was processed by fixed threshold that derived from the probability density function of correlation coefficients. There was no correlation between EEG leads Fpz-Cz and Pz-Oz during wakefulness (|r| < 0.1 for r θ, r α and r β, while 0.3 > r > 0.1 for r EEG and r δ), while low correlation existed during sleep (r ≈ −0.4 for r EEG, r δ, r θ, r α and r β). There were significant differences (analysis of variance, P < 0.001) for r EEG, r δ, r θ, r α and r β during sleep when in comparison with that during wakefulness, respectively. The accuracy for distinguishing states between wakefulness and sleep was 94.2, 93.4, 89.4, 85.2 and 91.4 % in terms of r EEG, r δ, r θ, r α and r β, respectively. However, no correlation index between EEG leads Fpz-Cz and Pz-Oz could distinguish all five types of wakefulness, rapid eye movement (REM) sleep, N1 sleep, N2 sleep and N3 sleep. In conclusion, the temporal correlation between EEG bipolar leads Fpz-Cz and Pz-Oz are highly associated with sleep-wake stages. Moreover, high accuracy of sleep-wake classification could be achieved by the temporal correlation within frequency band 0.5–30 Hz between EEG leads Fpz-Cz and Pz-Oz.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700