${\mathcal{C}^{\alpha}}$ -regularity for a class of non-diagonal elliptic syst
详细信息    查看全文
  • 作者:Miroslav Bulí?ek (1)
    Jens Frehse (2)
  • 关键词:35J60 ; 49N60
  • 刊名:Calculus of Variations and Partial Differential Equations
  • 出版年:2012
  • 出版时间:4 - March 2012
  • 年:2012
  • 卷:43
  • 期:3
  • 页码:441-462
  • 全文大小:328KB
  • 参考文献:1. Bensoussan, A., Frehse, J.: Regularity results for nonlinear elliptic systems and applications. In: Applied Mathematical Sciences, vol. 151. Springer, Berlin (2002)
    2. De Giorgi E.: Sulla differenziabilità e l’analiticità delle estremali degli integrali multipli regolari. Mem. Accad. Sci. Torino. Cl. Sci. Fis. Mat. Nat. 3(3), 25-3 (1957)
    3. De Giorgi E.: Un esempio di estremali discontinue per un problema variazionale di tipo ellittico. Boll. Un. Mat. Ital. 1(4), 135-37 (1968)
    4. Eshelby J.D.: The force on an elastic singularity. Phil. Trans. R. Soc. Lond. A 244, 84-12 (1951)
    5. Evans L.C.: Partial regularity for stationary harmonic maps into spheres. Arch. Ration. Mech. Anal. 116(2), 101-13 (1991). doi:10.1007/BF00375587 CrossRef
    6. Fuchs M.: Topics in the Calculus of Variations. Advanced Lectures in Mathematics. Friedr. Vieweg & Sohn, Braunschweig (1994)
    7. Giaquinta, M.: Multiple integrals in the calculus of variations and nonlinear elliptic systems. In: Annals of Mathematics Studies, vol. 105. Princeton University Press, Princeton, NJ (1983)
    8. Giaquinta, M., Hildebrandt, S.: Calculus of variations. In: Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 310. Springer, Berlin (1996). The Lagrangian formalism
    9. Hildebrandt S., Widman K.O.: Variational inequalities for vector-valued functions. J. Reine Angew. Math. 309, 191-20 (1979)
    10. Knops R.J., Stuart C.A.: Quasiconvexity and uniqueness of equilibrium solutions in nonlinear elasticity. Arch. Ration. Mech. Anal. 86(3), 233-49 (1984). doi:10.1007/BF00281557 CrossRef
    11. Ladyzhenskaya, O.A., Uraltseva, N.N.: Linear and quasilinear elliptic equations. Translated from the Russian by Scripta Technica, Inc. Translation editor: Leon Ehrenpreis. Academic Press, New York (1968)
    12. Mingione G.: Regularity of minima: an invitation to the dark side of the calculus of variations. Appl. Math. 51(4), 355-26 (2006). doi:10.1007/s10778-006-0110-3 CrossRef
    13. Nash J.: Continuity of solutions of parabolic and elliptic equations. Amer. J. Math. 80, 931-54 (1958) CrossRef
    14. Ne?as, J.: Example of an irregular solution to a nonlinear elliptic system with analytic coefficients and conditions for regularity. In: Theory of Nonlinear Operators. Proceedings of the fourth Internat. Summer School, Acadamic Science, Berlin (1975)
    15. Noether, E.: Invariant variation problems. Transp. Theory Stat. Phys. 1(3), 186-07 (1971). Translated from the German (Nachr. Akad. Wiss. G?ttingen Math.-Phys. Kl. II, pp. 235-57 (1918)
    16. Rajagopal K.R.: On implicit constitutive theories. Appl. Math. 48(4), 279-19 (2003) CrossRef
    17. Rajagopal K.R.: The elasticity of elasticity. Z. Angew. Math. Phys. 58(2), 309-17 (2007). doi:10.1007/s00033-006-6084-5 CrossRef
    18. Rajagopal K.R., Srinivasa A.R.: On the response of non-dissipative solids. Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci. 463, 2078 (2007). doi:10.1098/rspa.2006.1760 CrossRef
    19. Steffen, K.: Parametric surfaces of prescribed mean curvature. In: Calculus of Variations and Geometric Evolution Problems (Cetraro, 1996). LNCS, vol. 1713, pp. 211-65. Springer, Berlin (1999). doi:10.1007/BFb0092671
    20. Trautman A.: Noether equations and conservation laws. Comm. Math. Phys. 6, 248-61 (1967) CrossRef
    21. Uhlenbeck K.: Regularity for a class of non-linear elliptic systems. Acta Math. 138(3-), 219-40 (1977) CrossRef
    22. ?verák V., Yan X.: Non-Lipschitz minimizers of smooth uniformly convex functionals. Proc. Natl. Acad. Sci. USA 99(24), 15269-5276 (2002). doi:10.1073/pnas.222494699 CrossRef
  • 作者单位:Miroslav Bulí?ek (1)
    Jens Frehse (2)

    1. Faculty of Mathematics and Physics, Mathematical Institute, Charles University, Sokolovská 83, 186 775, Praha 8, Czech Republic
    2. Department of Applied Analysis, Institute for Applied Mathematics, University of Bonn, Endenicher Allee 60, 53115, Bonn, Germany
  • ISSN:1432-0835
文摘
We consider weak solutions to nonlinear elliptic systems in a W 1,p -setting which arise as Euler equations to certain variational problems. The solutions are assumed to be stationary in the sense that the differential of the variational integral vanishes with respect to variations of the dependent and independent variables. We impose new structure conditions on the coefficients which yield everywhere ${\mathcal{C}^{\alpha}}$ -regularity and global ${\mathcal{C}^{\alpha}}$ -estimates for the solutions. These structure conditions cover variational integrals like ${\int F(\nabla u)\; dx}$ with potential ${F(\nabla u):=\tilde F (Q_1(\nabla u),\ldots, Q_N(\nabla u))}$ and positively definite quadratic forms in ${\nabla u}$ defined as ${Q_i(\nabla u)=\sum_{\alpha \beta} a_i^{\alpha \beta} \nabla u^\alpha \cdot \nabla u^\beta}$ . A simple example consists in ${\tilde F(\xi_1,\xi_2):= |\xi_1|^{\frac{p}{2}} + |\xi_2|^{\frac{p}{2}}}$ or ${\tilde F(\xi_1,\xi_2):= |\xi_1|^{\frac{p}{4}}|\xi_2|^{\frac{p}{4}}}$ . Since the Q i need not to be linearly dependent our result covers a class of nondiagonal, possibly nonmonotone elliptic systems. The proof uses a new weighted norm technique with singular weights in an L p -setting.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700