x Mg x x Mg x x Mg x O composites exhibit a dominant broad yellow-green light band at 2.38?eV and two ultraviolet emission peaks at 3.24 and 3.45?eV corresponding to the luminescence of the hexagonal ZnO and ZnMgO structures, respectively. For the doped ZnO samples, it reveals also new red peaks at 1.72 and 1.77?eV assigned to impurities-emissions. However, the CL spectra recorded at 77?K show the presence of excitonic emission peaks related to recombination of free exciton (X Ax Mg x O composites is intimately connected to the film composition and surface morphology." />
Optical and structural properties of Zn1?em class="a-plus-plus">x Mg x O ceramic materials
详细信息    查看全文
  • 作者:Zayani Jaafar Othman (1)
    Adel Matoussi (1)
    Filippo Fabbri (2)
    Francesca Rossi (2)
    Giancarlo Salviati (2)
  • 刊名:Applied Physics A: Materials Science & Processing
  • 出版年:2014
  • 出版时间:September 2014
  • 年:2014
  • 卷:116
  • 期:3
  • 页码:1501-1509
  • 全文大小:1,311 KB
  • 参考文献:1. L. Gong, J.G. Lu, Z.Z. Ye, Sol. Energy Mater. Sol. Cells 94, 937 (2010) CrossRef
    2. S.M. Park, G.H. Gu, C.G. Park, Phys. Status Solidi A 208(11), 2688-691 (2011) CrossRef
    3. P.K. Kannan, R. Saraswathi, J.B.B. Rayappan, Sens. Actuator A Phys. 164, 8 (2010) CrossRef
    4. S.T. Shishiyanu, T.S. Shishiyanu, O.I. Lu-pan, Sens. Actuator B. Chem. 107(1), 379-86 (2005) CrossRef
    5. P. Cao, Y. Bai, D.X. Zhao, D.Z. Shen, Mater. Sci. Semicond. Process. 14, 73-7 (2011) CrossRef
    6. Y. Uspenskii, E. Kulatov, H. Mariette, H. Nakayama, H. Ohta, J. Magn. Magn. Mater. 248, 258 (2003)
    7. D.K. Hwang, M.S. Oh, J.H. Lim, S.J. Park, J. Phys. D Appl. Phys. 40, R387 (2007) CrossRef
    8. L. Li, Z. Yang, J.Y. Kong, J.L. Liu, Appl. Phys. Lett. 95, 232117 (2009) CrossRef
    9. Y. Hu, Y. Chang, P. Fei, R.L. Snyder, Z.L. Wang, ACS Nano 4, 1234 (2010) CrossRef
    10. ü. ?zgür, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Do?an, V. Avrutin, S.J. Cho, H. Morkoc, J. Appl. Phys. 98, 041301-41403 (2005) CrossRef
    11. A.D. Acharya, Shweta Moghe, Richa Panda, S.B. Shrivastava, Mohan Gangrade, T. Shripathi, D.M. Phase, V. Ganesan, Thin Solid Films 525, 49-5 (2012)
    12. M.G. Nair, M. Nirmala, K. Rekha, A. Anukaliani, Mater. Lett. 65, 1797-800 (2011) CrossRef
    13. A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakurai, Y. Yoshida, T. Yasuda, Y. Sewaga, Appl. Phys. Lett. 72, 2466 (1998) CrossRef
    14. Y. Ogawa, S. Fujihara, Phys. Status Solidi A 202, 1825-828 (2005) CrossRef
    15. A.K. Sharma, J. Narayan, J.F. Muth, C.W. Teng, C. Jin, A. Kvit, R.M. Kolbas, O.W. Manjula, G. Nair, M. Nirmala, K. Rekha, A. Anukaliani, Mater. Lett. 65, 1797-800 (2011) CrossRef
    16. U. Sahaym, M.G. Norton, J. Huso, J.L. Morrison, H. Che, L. Bergman, Nanotechnology 22, 425706 (2011) CrossRef
    17. C. Jin, Growth and Characterization of ZnO and ZnO-Based Alloys_MgxZn1-xO and MnxZn1-xO. Ph.D thesis. Department of Materials Science and Engineering, North Carolina State University, 2003
    18. W. Yang, S.S. Hullavarad, B. Nagraj, I. Takeuchi, R.P. Sharma, T. Venkatesan, Appl. Phys. Lett. 82, 3424 (2003) CrossRef
    19. X. Zhang, X.M. Li, T.L. Chen, C.Y. Zhang, W.D. Yu, Appl. Phys. Lett. 87, 092101-92103 (2005) CrossRef
    20. B. Yu, X. Xu, S. Zhuang, J. Pan, J. Hu, Mater. Lett. 82, 145-47 (2012) CrossRef
    21. S. Chakraborty, C.S. Tiwary, A.K. Kole, P. Kumbhakar, K. Chattopadhyay, Mater. Lett. 91, 379-82 (2013) CrossRef
    22. J. Zhang, F. Pan, W. Hao, T. Wang, Mater. Sci. Eng. B 129, 93-5 (2006) CrossRef
    23. Z.L. Liu, Z.X. Mei, R. Wang, J.M. Zhao, H.L. Liang, Y. Guo, A.Y. Kuznetsov, X.L. Du, J. Phys. D Appl. Phys. 43, 285402 (2010) CrossRef
    24. L. Lazzarini, G. Salviati, F. Fabbri, M. Zha, D. Calestani, A. Zappettini, T. Sekiguchi, B. Dierre, ACS Nano 3(10), 3158-164 (2009) CrossRef
    25. S. Ilican, Y. Caglar, M. Caglar, B. Demirci, J. Optoelectron. Adv. Mater. 10(10), 2592-598 (2008)
    26. M. Chaari, A. Matoussi, Z. Fakhfakh, Mater. Sci. Appl. 2, 765-70 (2011)
    27. P. Kumar, J.P. Singh, Y. Kumar, A. Gaur, H.K. Malik, K. Asokan, Curr. Appl. Phys. 12, 1166-172 (2012) CrossRef
    28. S.S. Hullavarad, N.V. Hullavarad, D.E. Pugel, S. Dhar, I. Takeuchi, T. Venkatesan, R.D. Vispute, J. Phys. D Appl. Phys. 40, 4887-895 (2007) CrossRef
    29. H. Endo, M. Kikuchi, M. Ashioi, Y. Kashiwaba, K. Hane, Y. Kashiwaba, Appl. Phys. Express 1, 051201 (2008) CrossRef
    30. Q. Zheng, F. Huang, K. Ding, J. Huang, D. Chen, Z. Zhan, Z. Lin, Appl. Phys. Lett. 98, 221112 (2011) CrossRef
    31. W. Geng, N. Li, X. Li, X. Lai, L. Wang, B. Long, J. Ning, J. Tu, S. Qiu, Mater. Res. Bull. 43, 601-10 (2008) CrossRef
    32. A. Singh, A. Vij, D. Kumar, P.K. Khanna, M. Kumar, S. Gautam, K.H. Chae, Semicond. Sci. Technol. 28, 025004 (2013) CrossRef
    33. W.Q. Peng, S.C. Qu, G.W. Cong, Z.G. Wang, Appl. Phys. Lett. 88(1-3), 101902 (2006) CrossRef
    34. P. Kubelka, F. Munk, Z. Tech. Phys. 12 593 (1931)
    35. A.E. Morales, E.S. Mora, U. Pal, Rev. Mex. Fis. 53(5), 18 (2007)
    36. Nidhi Adhlakha, K.L. Yadav, Amit Kumar, Piyush Kumar Patel, Jyoti Rani, Meera Rawat, Physica B Condens. Matter 407 3427-433 (2012)
    37. F.K. Shan, G.X. Liu, W.J. Lee, B.C. Shin, J. Cryst. Growth 291, 328 (2006) CrossRef
    38. A. AShrafi, Y. Segawa, J. Appl. Phys. 104, 123528 (2008) CrossRef
    39. X.Q. Gu, L.P. Zhu, L. Cao, Z.Z. Ye, H.P. He, P.K. Chu, Mater. Sci. Semicond. Process. 14, 48-1 (2011) CrossRef
    40. F. Urbach, Phys. Rev. 92, 1324 (1953) CrossRef
    41. A. Wakahara, A. Yoshida, H. Okada, H.J. Kim, H.J. Chang, K.J. Suh, Toyohashi University of Technology. http://www.icee-con.org/papers/2005/454.pdf
    42. A. Bourgine, A. El Hichou, M. Addou, J. Ebothé, A. Kachouane, M. Troyon, Mater. Chem. Phys. 80, 438-45 (2003) CrossRef
    43. A. El Hichou, A. Bourgine, J.L. Bubendorff, J. Ebothé, M. Addou, M. Troyon, Semicond. Sci. Technol. 17, 607-13 (2002) CrossRef
    44. T. Minami, H. Nato, S. Takata, J. Lumin. 24(25), 63 (1981) CrossRef
    45. A. Sibleyw, M. Nelsonc, Y. Chen, J. Chem. Phys. 48, 4582 (1968)
    46. M. Searlet, A.M. Glass, J. Phys. Chem. Solids 29, 609 (1968) CrossRef
    47. S. Data, I.M. Boswarva, D.B. Holt, J. de Phys. 41, C6–C522 (1980)
    48. E. Feldbach, R. Jaaniso, M. Kodu, V.P. Denks, A. Kasikov, P. Liblik, A. Maaroos, H. M?ndar, M. Kirm, J. Mater. Sci. Mater. Electron. 20, S321–S325 (2009) CrossRef
    49. Jesse Huso, John L. Morrison, Hui Che, Jency P. Sundararajan, Wei Jiang Yeh, David McIlroy, Thomas J. Williams, and Leah Bergman Journal of Nanomaterials, vol 2011, Article ID 691582
    50. X.T. Zhang, Y.C. Liu, Z.Z. Zhi, J.Y. Zhang, Y.M. Lu, D.Z. Shen, W. Xu, X.W. Fan, X.G. Kong, J. Lumin. 99, 149-54 (2002) CrossRef
    51. S. Heitsch, G. Benndorf, G. Zimmermann, C. Schulz, D. Spemann, H. Hochmuth, H. Schmidt, T. Nobis, M. Lorez, M. Grundmann, Appl. Phys. A 88, 99-04 (2007) CrossRef
  • 作者单位:Zayani Jaafar Othman (1)
    Adel Matoussi (1)
    Filippo Fabbri (2)
    Francesca Rossi (2)
    Giancarlo Salviati (2)

    1. Laboratory of Composite Ceramic and Polymer Materials, Scientific Faculty of Sfax, Sfax, Tunisia
    2. Institute of Materials for Electronics and Magnetism (IMEM) CNR, Parma University, Parma, Italy
  • ISSN:1432-0630
文摘
This paper reports structural, optical and cathodoluminescence characterizations of sintered Zn1?em class="a-plus-plus">x Mg x O composite materials. The effects of MgO composition on these film properties have been analyzed. X-ray diffraction (XRD) confirms that all composites are polycrystalline with prominent hexagonal wurtzite structure along two preferred orientations (002) and (101) for the crystallite growth. Above doping content x?=?10?%, the formation of the hexagonal ZnMgO alloy phase and the segregation of the cubic MgO phase start. From reflectance and absorption measurements, we determined the band gap energy which tends to increase from 3.287 to 3.827?eV as the doping content increases. This widening of the optical band gap is explained by the Burstein–Moss effect which causes a significant increase of electron concentration (2.89?×?1018?.19?×?1020?cm?). The luminescent properties of the Zn1?em class="a-plus-plus">x Mg x O pellets are studied by cathodoluminescence (CL) at room and liquid nitrogen temperatures under different electron beam excitations. At room temperature, the CL spectra of the Zn1?em class="a-plus-plus">x Mg x O composites exhibit a dominant broad yellow-green light band at 2.38?eV and two ultraviolet emission peaks at 3.24 and 3.45?eV corresponding to the luminescence of the hexagonal ZnO and ZnMgO structures, respectively. For the doped ZnO samples, it reveals also new red peaks at 1.72 and 1.77?eV assigned to impurities-emissions. However, the CL spectra recorded at 77?K show the presence of excitonic emission peaks related to recombination of free exciton (X A), neutral donor-bound excitons (D0X) and their phonon replicas. The CL intensity and energy position of the green, red and ultraviolet emission peaks are found to depend strongly on the MgO doping content. The CL intensity of the UV and red emissions is more enhanced than the green light when the MgO content increases. CL imaging analysis shows that the repartition of the emitting centers in Zn1?em class="a-plus-plus">x Mg x O composites is intimately connected to the film composition and surface morphology.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700