Chromate induces adventitious root formation via auxin signalling and SOLITARY-ROOT/IAA14 gene function in Arabidopsis thaliana
详细信息    查看全文
  • 作者:José López-Bucio ; Randy Ortiz-Castro ; León Francisco Ruíz-Herrera…
  • 关键词:Adventitious roots ; Chromate ; Auxin ; Arabidopsis thaliana ; Heavy metals
  • 刊名:Biometals
  • 出版年:2015
  • 出版时间:April 2015
  • 年:2015
  • 卷:28
  • 期:2
  • 页码:353-365
  • 全文大小:3,946 KB
  • 参考文献:1. Barceló, J, Poschenrieder, C, Gunse, B (1985) Effect of chromium VI on mineral element composition of bush beans. J Plant Nutr 8: pp. 211-217 CrossRef
    2. Bellini, C, Pacurar, DI, Perrone, I (2014) Adventitious roots and lateral roots: similarities and differences. Annu Rev Plant Biol 65: pp. 639-666 CrossRef
    3. Benjamins, R, Scheres, B (2008) Auxin: the looping star in plant development. Annu Rev Plant Biol 59: pp. 443-465 CrossRef
    4. Benková, E, Michniewicz, M, Sauer, M, Teichmann, T, Seifertová, D, Jürgens, G, Friml, J (2003) Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115: pp. 591-602 CrossRef
    5. Blilou, I, Xu, J, Wildwater, M, Willemsen, V, Paponov, I, Friml, J, Heidstra, R, Aida, M, Palme, K, Scheres, B (2005) The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature 433: pp. 39-44 CrossRef
    6. Davies, J (2010) Plant hormones: biosynthesis, signal transduction, action. Kluwer Academic Publishers, Dordrecht CrossRef
    7. Herder, G, Isterdael, G, Beeckman, T, Smet, I (2010) The roots of a new green revolution. Trends Plant Sci 15: pp. 600-607 CrossRef
    8. Dharmasiri, N, Dharmasiri, S, Estelle, M (2005) The F-box protein TIR1 is an auxin receptor. Nature 435: pp. 441-445 CrossRef
    9. Dolan, L, Janmaat, K, Willemsen, V, Linstead, P, Poethig, S, Roberts, K, Scheres, B (1993) Cellular organisation of the Arabidopsis thaliana root. Development 119: pp. 71-84
    10. Dubey, S, Misra, P, Sanjay, S, Chatterjee, S, Bag, SK, Mantri, S, Assif, MH, Rai, A, Kumar, S, Tripathi, P, Tripathi, R, Trivedi, PK, Chakrabarty, D, Tuli, R (2010) Transcriptomic and metabolomics shifts in rice roots in response to Cr(VI) stress. BMC Genom 11: pp. 648-667 CrossRef
    11. Dubrovsky, JG, Sauer, M, Napsucialy-Mendivil, S, Ivanchenko, MG, Friml, J, Shishkova, S, Celenza, J, Benková, E (2008) Auxin acts as a local morphogenetic trigger to specify lateral root founder cells. Proc Natl Acad Sci USA 105: pp. 8790-8794 CrossRef
    12. Fukaki, H, Tameda, S, Masuda, H, Tasaka, M (2002) Lateral root formation in blocked by a gain-of-function mutation line in the SOLITARY-ROOT/IAA14 gene of Arabidopsis. Plant J 29: pp. 153-168 CrossRef
    13. Giehl, RFH, Wirén, N (2014) Root nutrient foraging. Plant Physiol 166: pp. 509-517 CrossRef
    14. Gifford, ML, Dean, A, Gutiérrez, RA, Coruzzi, GM, Birnbaum, KD (2008) Cell-specific nitrogen responses mediate developmental plasticity. Proc Natl Acad Sci USA 105: pp. 803-808 CrossRef
    15. Gutiérrez, L, Bussell, JD, Pacurar, DI, Schwambach, J, Pacurar, M, Bellini, C (2009) Phenotypic plasticity of adventitious rooting in Arabidopsis is controlled by a complex regulation of AUXIN RESPONSE FACTOR transcripts and MicroRNA abundance. Plant Cell 21: pp. 3119-3132 CrossRef
    16. Gutiérrez, L, Mongelard, G, Floková, K, Pacurar, DI, Novák, O, Staswick, P, Kowalczyk, M, Pacurar, M, Demailly, H, Geiss, G, Bellini, C (2012) Auxin controls Arabidopsis adventitious root initiation by regulating jasmonic acid homeostasis. Plant Cell 24: pp. 2515-2527 CrossRef
    17.
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Biochemistry
    Physical Chemistry
  • 出版者:Springer Netherlands
  • ISSN:1572-8773
文摘
Morphological root plasticity optimizes nutrient and water uptake by plants and is a promising target to improve tolerance to metal toxicity. Exposure to sublethal chromate [Cr(VI)] concentrations inhibits root growth, decreases photosynthesis and compromises plant development and productivity. Despite the increasing environmental problem that Cr(VI) represents, to date, the Cr tolerance mechanisms of plants are not well understood, and it remains to be investigated whether root architecture remodelling is important for plant adaptation to Cr(VI) stress. In this report, we analysed the growth response of Arabidopsis thaliana seedlings to concentrations of Cr(VI) that strongly repress primary and lateral root growth. Interestingly, adventitious roots started developing, branched and allowed seedlings to grow under highly growth-repressing Cr(VI) concentrations. Cr(VI) negatively regulates auxin transport and response gene expression in the primary root tip, as evidenced by decreased expression of auxin-related reporters DR5::GFP, DR5::uidA and PIN1::PIN1::GFP, and then, another auxin maximum is established at the site of adventitious root initiation that drives adventitious root organogenesis. Both primary root growth inhibition and adventitious root formation induced by high Cr(VI) levels are blocked by a gain-of-function mutation in the SOLITARY-ROOT/IAA14 gene of Arabidopsis. These data provide evidence that suggests a critical role for auxin transport and signalling via IAA14/SLR1 in the developmental program linking Cr(VI) to root architecture remodelling.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700