Evolutionary relationships of the old world fruit bats (Chiroptera, Pteropodidae): Another star phylogeny?
详细信息    查看全文
  • 作者:Francisca C Almeida (1) (2) (3)
    Norberto P Giannini (1) (4)
    Rob DeSalle (2)
    Nancy B Simmons (1)
  • 刊名:BMC Evolutionary Biology
  • 出版年:2011
  • 出版时间:December 2011
  • 年:2011
  • 卷:11
  • 期:1
  • 全文大小:340KB
  • 参考文献:1. Simmons NB: Order Chiroptera. In / Mammal species of the world: a taxonomic and geographic reference. Edited by: Wilson DE, Reeder DM. Baltimore, MD: Johns Hopkins University Press; 2005:312鈥?29.
    2. Nowak RM: / Walker's bats of the World. Baltimore and London: The Johns Hopkins University Press; 1994.
    3. Mickleburgh SP, Hutson AM, Racey PA: / Old World fruit bats: an action plan for their conservation. Gland, Switzerland: IUCN; 1992. CrossRef
    4. Simmons NB: Bat relationships and the origin of flight. / Symposium of the Zoological Society of London 1995, 67:27鈥?3.
    5. Thewissen JG, Babcock SK: Distinctive cranial and cervical innervation of wing muscles: new evidence for bat monophyly. / Science 1991,251(4996):934鈥?36. CrossRef
    6. Ammerman LK, Hillis DM: A molecular test of bat relationships: monophyly or diphyly? / Syst Biol 1992,41(2):222鈥?32.
    7. Stanhope MJ, Czelusniak J, Si JS, Nickerson J, Goodman M: A molecular perspective on mammalian evolution from the gene encoding interphotoreceptor retinoid binding protein, with convincing evidence for bat monophyly. / Mol Phylogenet Evol 1992,1(2):148鈥?60. CrossRef
    8. Kirsch JAW, Flannery TF, Springer MS, Lapointe F-J: Phylogeny of the Pteropodidae (Mammalia: Chiroptera) based on DNA hybridisation, with evidence for bat monophyly. / Aust J Zool 1995,43(4):395鈥?28. CrossRef
    9. Teeling EC, Scally M, Kao DJ, Romagnoli ML, Springer MS, Stanhope MJ: Molecular evidence regarding the origin of echolocation and flight in bats. / Nature 2000,403(6766):188鈥?92. CrossRef
    10. Teeling EC, Springer MS, Madsen O, Bates P, O'Brien SJ, Murphy WJ: A molecular phylogeny for bats illuminates biogeography and the fossil record. / Science 2005,307(5709):580鈥?84. CrossRef
    11. Springer MS, Teeling EC, Madsen O, Stanhope MJ, de Jong WW: Integrated fossil and molecular data reconstruct bat echolocation. / Proc Natl Acad Sci USA 2001,98(11):6241鈥?246. CrossRef
    12. Andersen K: Catalogue of the Chiroptera in the collection of the British Museum. / Catalogue of the Chiroptera in the collection of the British Museum 2nd ed 1 2nd edition. 1912, (ci +854).
    13. Hollar LJ, Springer MS: Old World fruitbat phylogeny: evidence for convergent evolution and an endemic African clade. / Proc Natl Acad Sci USA 1997,94(11):5716鈥?721. CrossRef
    14. Bergmans W: Taxonomy and biogeography of African fruit bats (Mammalia, Megachiroptera). 5. The genera Lissonycteris Andersen, 1912, Myonycteris Matschie, 1899 and Megaloglossus Pagenstecher, 1885; general remarks and conclusions; annex: key to all species. / Beaufortia 1997,47(2):11鈥?0.
    15. Juste J, Alvarez Y, Tabares E, Garrido-Pertierra A, Ibanez C, Bautista JM: Phylogeography of African fruitbats (Megachiroptera). / Mol Phylogenet Evol 1999,13(3):596鈥?04. CrossRef
    16. Romagnoli ML, Springer MS: Evolutionary relationships among Old World fruitbats (Megachiroptera: Pteropodidae) based on 12S rRNA, tRNA valine, and 16S rRNA gene sequences. / J Mamm Evol 2000,7(4):259鈥?84. CrossRef
    17. Colgan DJ, da Costa P: Megachiropteran evolution studied with 12S rDNA and c-mos DNA sequences. / J Mamm Evol 2002,9(1鈥?):3鈥?2. CrossRef
    18. Giannini NP, Simmons NB: A phylogeny of megachiropteran bats (Mammalia: Chiroptera: Pteropodidae) based on direct optimization analysis of one nuclear and four mitochondrial genes. / Cladistics 2003,19(6):496鈥?11. CrossRef
    19. Giannini NP, Simmons NB: Conflict and congruence in a combined DNA-morphology analysis of megachiropteran bat relationships (Mammalia: Chiroptera: Pteropodidae). / Cladistics 2005,21(5):411鈥?37. CrossRef
    20. Giannini NP, Cunha Almeida F, Simmons NB, DeSalle R: Phylogenetic relationships of the enigmatic harpy fruit bat, Harpyionycteris (Mammalia: Chiroptera: Pteropodidae). / American Museum Novitates 2006, 3533:1鈥?2. CrossRef
    21. Giannini NP, Almeida FC, Simmons NB: Phylogenetic relationships of hapyionycterine bats. In / Systematic Mammalogy: contributions in honor of Guy G Musser. / Volume 331. Edited by: Voss R, Carleton M. New York: Bulletin of the American Museum of Natural History; 2009:83鈥?01.
    22. Delsuc F, Brinkmann H, Philippe H: Phylogenomics and the reconstruction of the tree of life. / Nat Rev Genet 2005,6(5):361鈥?75. CrossRef
    23. Hillis DM: Inferring complex phylogenies. / Nature 1996,383(6596):130鈥?31. CrossRef
    24. Hillis DM, Pollock DD, McGuire JA, Zwickl DJ: Is sparse taxon sampling a problem for phylogenetic inference? / Syst Biol 2003,52(1):124鈥?26. CrossRef
    25. Delsuc F, Scally M, Madsen O, Stanhope MJ, de Jong WW, Catzeflis FM, Springer MS, Douzery EJ: Molecular phylogeny of living xenarthrans and the impact of character and taxon sampling on the placental tree rooting. / Mol Biol Evol 2002,19(10):1656鈥?671.
    26. Davalos LM, Perkins SL: Saturation and base composition bias explain phylogenomic conflict in Plasmodium . / Genomics 2008,91(5):433鈥?42. CrossRef
    27. Almeida FC, Giannini NP, DeSalle R, Simmons NB: The phylogenetic relationships of cynopterine fruit bats (Chiroptera: Pteropodidae: Cynopterinae). / Mol Phylogenet Evol 2009,53(3):772鈥?83. CrossRef
    28. Aguinaldo AM, Turbeville JM, Linford LS, Rivera MC, Garey JR, Raff RA, Lake JA: Evidence for a clade of nematodes, arthropods and other moulting animals. / Nature 1997,387(6632):489鈥?93. CrossRef
    29. Gruber KF, Voss RS, Jansa SA: Base-compositional heterogeneity in the RAG1 locus among didelphid marsupials: implications for phylogenetic inference and the evolution of GC content. / Syst Biol 2007,56(1):83鈥?6. CrossRef
    30. Steel MA, Lockhart PJ, Penny D: Confidence in evolutionary trees from biological sequence data. / Nature 1993,364(6436):440鈥?42. CrossRef
    31. Felsenstein J: / Inferring phylogenies. Sunderland, Massachusetts: Sinauer; 2004.
    32. Nikolaev S, Montoya-Burgos JI, Margulies EH, Rougemont J, Nyffeler B, Antonarakis SE: Early history of mammals is elucidated with the ENCODE multiple species sequencing data. / PLoS Genet 2007,3(1):e2. CrossRef
    33. Hallstrom BM, Janke A: Resolution among major placental mammal interordinal relationships with genome data imply that speciation influenced their earliest radiations. / BMC Evol Biol 2008, 8:162. CrossRef
    34. Poe S, Chubb AL: Birds in a bush: five genes indicate explosive evolution of avian orders. / Evolution 2004,58(2):404鈥?15.
    35. Hackett SJ, Kimball RT, Reddy S, Bowie RC, Braun EL, Braun MJ, Chojnowski JL, Cox WA, Han KL, Harshman J, / et al.: A phylogenomic study of birds reveals their evolutionary history. / Science 2008,320(5884):1763鈥?768. CrossRef
    36. Pamilo P, Nei M: Relationships between gene trees and species trees. / Mol Biol Evol 1988,5(5):568鈥?83.
    37. Leite YL, Patton JL: Evolution of South American spiny rats (Rodentia, Echimyidae): the star-phylogeny hypothesis revisited. / Mol Phylogenet Evol 2002,25(3):455鈥?64. CrossRef
    38. Arndt PF: Reconstruction of ancestral nucleotide sequences and estimation of substitution frequencies in a star phylogeny. / Gene 2007,390(1鈥?):75鈥?3. CrossRef
    39. Pollock DD, Zwickl DJ, McGuire JA, Hillis DM: Increased taxon sampling is advantageous for phylogenetic inference. / Syst Biol 2002,51(4):664鈥?71. CrossRef
    40. Zwickl DJ, Hillis DM: Increased taxon sampling greatly reduces phylogenetic error. / Syst Biol 2002,51(4):588鈥?98. CrossRef
    41. Baurain D, Brinkmann H, Philippe H: Lack of resolution in the animal phylogeny: closely spaced cladogeneses or undetected systematic errors? / Mol Biol Evol 2007,24(1):6鈥?. CrossRef
    42. Kluge AG: A concern for evidence and a phylogenetic hypothesis of relationships among Epicrates (Boidae, Serpentes). / Syst Biol 1989, 38:7鈥?5.
    43. Nixon KC, Carpenter JM: On simultaneous analysis. / Cladistics 1996, 12:221鈥?41. CrossRef
    44. Rokas A, Williams BL, King N, Carroll SB: Genome-scale approaches to resolving incongruence in molecular phylogenies. / Nature 2003,425(6960):798鈥?04. CrossRef
    45. Driskell AC, Ane C, Burleigh JG, McMahon MM, O'Meara BC, Sanderson MJ: Prospects for building the tree of life from large sequence databases. / Science 2004,306(5699):1172鈥?174. CrossRef
    46. DeSalle R: Animal phylogenomics: multiple interspecific genome comparisons. / Methods Enzymol 2005, 395:104鈥?33. CrossRef
    47. de la Torre J, Egan M, Katari M, Brenner E, Stevenson D, Coruzzi G, DeSalle R: ESTimating plant phylogeny: lessons from partitioning. / BMC Evol Biol 2006,6(1):48. CrossRef
    48. Lee MS, Camens AB: Strong morphological support for the molecular evolutionary tree of placental mammals. / J Evol Biol 2009,22(11):2243鈥?257. CrossRef
    49. Cummings MP, Meyer A: Magic bullets and golden rules: data sampling in molecular phylogenetics. / Zoology (Jena) 2005,108(4):329鈥?36.
    50. Sullivan J: Combining Data with Different Distributions of Among-Site Rate Variation. / Syst Biol 1996,45(3):375鈥?80. CrossRef
    51. Brown JM, Lemmon AR: The importance of data partitioning and the utility of Bayes factors in Bayesian phylogenetics. / Syst Biol 2007,56(4):643鈥?55. CrossRef
    52. Lemmon AR, Brown JM, Stanger-Hall K, Lemmon EM: The effect of ambiguous data on phylogenetic estimates obtained by Maximum Likelihood and Bayesian Inference. / Syst Biol 2009,58(1):130鈥?45. CrossRef
    53. Xia X, Xie Z, Salemi M, Chen L, Wang Y: An index of substitution saturation and its application. / Mol Phylogenet Evol 2003.,26(1鈥?):
    54. Jeffroy O, Brinkmann H, Delsuc F, Philippe H: Phylogenomics: the beginning of incongruence? / Trends Genet 2006,22(4):225鈥?31. CrossRef
    55. Leigh JW, Susko E, Baumgartner M, Roger AJ: Testing congruence in phylogenomic analysis. / Syst Biol 2008,57(1):104鈥?15. CrossRef
    56. Ronquist F: Dispersal-vicariance analysis: a new approach to the quantification of historical biogeography. / Syst Biol 1997,46(1):195鈥?03. CrossRef
    57. Teeling EC, Madsen O, Van den Bussche RA, de Jong WW, Stanhope MJ, Springer MS: Microbat paraphyly and the convergent evolution of a key innovation in Old World rhinolophoid microbats. / Proc Natl Acad Sci USA 2002,99(3):1431鈥?436. CrossRef
    58. Whitfield JB, Lockhart PJ: Deciphering ancient rapid radiations. / Trends Ecol Evol 2007,22(5):258鈥?65. CrossRef
    59. Kolaczkowski B, Thornton JW: Performance of maximum parsimony and likelihood phylogenetics when evolution is heterogeneous. / Nature 2004,431(7011):980鈥?84. CrossRef
    60. Rokas A, Kruger D, Carroll SB: Animal evolution and the molecular signature of radiations compressed in time. / Science 2005,310(5756):1933鈥?938. CrossRef
    61. Takezaki N, Figueroa F, Zaleska-Rutczynska Z, Takahata N, Klein J: The phylogenetic relationship of tetrapod, coelacanth, and lungfish revealed by the sequences of forty-four nuclear genes. / Mol Biol Evol 2004,21(8):1512鈥?524. CrossRef
    62. Miller-Butterworth CM, Murphy WJ, O'Brien SJ, Jacobs DS, Springer MS, Teeling EC: A family matter: conclusive resolution of the taxonomic position of the long-fingered bats, Miniopterus . / Molecular Biology Evolution 2007,24(7):1553鈥?561. CrossRef
    63. Gavrilets S, Losos JB: Adaptive radiation: contrasting theory with data. / Science 2009,323(5915):732鈥?37. CrossRef
    64. Lack JB, Roehrs ZP, Stanley CE, Ruedi M, Van den Bussche RA: Molecular phylognetics of Myotis indicate familial-level divergence for the genus Cistugo (Chiroptera). / J Mammal 2010,91(4):976鈥?92. CrossRef
    65. Givnish T: Adaptive radiation and molecular systematics: issues and approaches. In / Molecular evolution and adaptive radiation. Edited by: Givnish T, Sytsma K. Cambrige, UK: Cambridge University Press; 1997:1鈥?4.
    66. Yoder J, Clancey E, Roches SD, Eastman J, Gentry L, Godsoe W, Hagey T, Jochimsen D, Oswald B, Robertson J, / et al.: Ecological opportunity and the origin of adaptive radiations. / J Evol Biol 2010,23(8):1581鈥?596. CrossRef
    67. Pettigrew JD, Jamieson BGM, Robson SK, Hall LS, McAnally KI, Cooper HM: Phylogenetic relations between microbats, megabats and primates (Mammalia: Chiroptera and Primates). / Philos Trans R Soc Lond, Ser B: Biol Sci 1989,325(1229):489鈥?59. CrossRef
    68. Hutcheon JM, Garland T: Are Megabats Big? / J Mamm Evol 2004,11(3):257鈥?77. CrossRef
    69. Platnick N, Griswold C, Coddington J: On missing entries in cladistic analysis. / Cladistics 1991,7(4):337鈥?43. CrossRef
    70. Wiens JJ: Missing data, incomplete taxa, and phylogenetic accuracy. / Syst Biol 2003,52(4):528鈥?38. CrossRef
    71. Wiens JJ: Incomplete taxa, incomplete characters, and phylogenetic accuracy: is there a missing data problem? / J Vert Paleontol 2003,22(2):297鈥?10. CrossRef
    72. Wiens JJ: Missing data and the design of phylogenetic analyses. / J Biomed Inf 2006,39(1):34鈥?2. CrossRef
    73. Giannini NP, Almeida FC, Simmons NB, Helgen KM: The systematic position of Pteropus leucopterus and its bearing on the monophyly and relationships of Pteropus (Chiroptera: Pteropodidae). / Acta Chiropterologica 2008,10(1):11鈥?0. CrossRef
    74. Helgen KM: Systematics of the Pacific monkey-faced bats (Chiroptera:Pteropodidea), with a new species of Pteralopex and a new Fijian genus. / Syst Biodivers 2010,3(4):433鈥?53. CrossRef
    75. Datzmann T, von Helversen O, Mayer F: Evolution of nectarivory in phyllostomid bats (Phyllostomidae Gray, 1825, Chiroptera: Mammalia). / BMC Evol Biol 2010, 10:165. CrossRef
    76. Porter CA, Goodman M, Stanhope MJ: Evidence on mammalian phylogeny from sequences of exon 28 of the von Willebrand Factor gene. / Mol Phylogenet Evol 1996,5(1):89鈥?01. CrossRef
    77. Bastian ST Jr, Tanaka K, Anunciado RVP, Natural NG, Sumalde AC, Namikawa T: Evolutionary relationships of flying foxes (genus Pteropus ) in the Philippines inferred from DNA sequences of cytochrome b gene. / Biochem Genet 2002,40(3鈥?):101鈥?16. CrossRef
    78. Springer MS, Hollar LJ, Kirsch JAW: Phylogeny, molecules versus morphology, and rates of character evolution among fruitbats (Chiroptera: Megachiroptera). / Aust J Zool 1995,43(6):557鈥?82. CrossRef
    79. Katoh K, Misawa K, Toh H, Miyata T: MAFFT version 5: improvement in accuracy of multiple sequence alignment. / Nucleic Acids Res 2005, 33:511鈥?18. CrossRef
    80. Maddison D, Maddison W: / MacClade 4: Analysis of phylogeny and character evolution. 4.0th edition. Sunderland, Massachusetts: Sinauer Associates; 2000.
    81. Farris JS, Kallersjo M, Kluge AG, Bult C: Permutations. / Cladistics 1994,10(1):65鈥?6. CrossRef
    82. Swofford DL: PAUP*: Phylogenetic Analysis Using Parsimony (* and other methods). Version 4. Sinauer Associates, Sunderland, Massachusetts. 2002.
    83. Barker FK, Lutzoni FM: The utility of the incongruence length difference test. / Syst Biol 2002,51(4):625鈥?37. CrossRef
    84. Darlu P, Lecointre G: When does the Incongruence Length Difference test fail? / Mol Biol Evol 2002,19(4):432鈥?37.
    85. Xia X, Lemey P: Assesing substitution saturation with DAMBE. In / The Phylogenetic Handbook. Edited by: Lemey P. Cambridge, UK: Cambridge University Press; 2009:611鈥?26.
    86. Pond S, Muse S: HyPhy: Hypothesis Testing Using Phylogenies. / Statistical Methods in Molecular Evolution 2005, 125鈥?81. CrossRef
    87. Sorenson MD, Franzosa EA: / TreeRot, version 3. Boston, MA: Boston University; 2007.
    88. Jobb G, von Haeseler A, Strimmer K: TREEFINDER: A powerful graphical analysis environment for molecular phylogenetics. / BMC Evol Biol 2004, 4:18. CrossRef
    89. Akaike H: Information theory and an extension of the maximum likelihood principle. In / Second International Symposium on Information Theory. Edited by: Petrov PN, Csaki F. Budapest: Akad. Kiado; 1973:267鈥?81.
    90. Posada D, Crandall KA: MODELTEST: testing the model of DNA substitution. / Bioinformatics 1998,14(9):817鈥?18. CrossRef
    91. Schwarz G: Estimating the dimensions of a model. / Annals of Statistics 1978,6(2):461鈥?64. CrossRef
    92. Sullivan J, Joyce P: Model selection in phylogenetics. / Annu Rev Ecol Evol Syst 2005,36(1):445鈥?66. CrossRef
    93. Shimodaira H, Hasegawa M: Multiple comparisons of log-likelihoods with applications to phylogenetic inference. / Mol Biol Evol 1999,16(8):1114鈥?116.
    94. Shimodaira H: An approximately unbiased test of phylogenetic tree selection. / Syst Biol 2002,51(3):492鈥?08. CrossRef
    95. Kishino H, Hasegawa M: Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in hominoidea. / J Mol Evol 1989,29(2):170鈥?79. CrossRef
    96. Templeton A: Phylogenetic inference from restriction endonuclease cleavage site maps with particular reference to the evolution of humans and the apes. / Evolution 1983,37(2):221鈥?44. CrossRef
    97. Goldman N, Whelan S: Statistical tests of gamma-distributed rate heterogeneity in models of sequence evolution in phylogenetics. / Mol Biol Evol 2000, 17:975鈥?78.
    98. Goldman N, Anderson JP, Rodrigo AG: Likelihood-based tests of topologies in phylogenetics. / Syst Biol 2000, 49:652鈥?70. CrossRef
    99. Yang Z: PAML: a program package for phylogenetic analysis by maximum likelihood. / Computer Applications in BioSciences 1997,13(5):555鈥?56.
    100. Yang Z: PAML 4: phylogenetic analysis by maximum likelihood. / Mol Biol Evol 2007,24(8):1586鈥?591. CrossRef
    101. Stamatakis A: RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. / Bioinformatics 2006,22(21):2688鈥?690. CrossRef
    102. Ronquist F: / DIVA, ver1.1. Computer program avaialble by anonymous FTP from Uppsala University. Uppsala: Uppsala University; 1996.
  • 作者单位:Francisca C Almeida (1) (2) (3)
    Norberto P Giannini (1) (4)
    Rob DeSalle (2)
    Nancy B Simmons (1)

    1. Division of Vertebrate Zoology, Department of Mammalogy, American Museum of Natural History, Central Park West at 79th Street, New York, NY, 10024, USA
    2. Sackler Institute for Comparative Genomics, American Museum of Natural History, Central Park West at 79th Street, New York, NY, 10024, USA
    3. Departament de Gen猫tica, Universitat de Barcelona, Diagonal 645, Barcelona, 08028, Spain
    4. CONICET, Programa de Investigaciones de Biodiversidad Argentina, Universidad Nacional de Tucum谩n, Facultad de Ciencias Naturales e Instituto Miguel Lillo, Miguel Lillo 205, Tucum谩n, CP 4000, Argentina
文摘
Background The family Pteropodidae comprises bats commonly known as megabats or Old World fruit bats. Molecular phylogenetic studies of pteropodids have provided considerable insight into intrafamilial relationships, but these studies have included only a fraction of the extant diversity (a maximum of 26 out of the 46 currently recognized genera) and have failed to resolve deep relationships among internal clades. Here we readdress the systematics of pteropodids by applying a strategy to try to resolve ancient relationships within Pteropodidae, while providing further insight into subgroup membership, by 1) increasing the taxonomic sample to 42 genera; 2) increasing the number of characters (to >8,000 bp) and nuclear genomic representation; 3) minimizing missing data; 4) controlling for sequence bias; and 5) using appropriate data partitioning and models of sequence evolution. Results Our analyses recovered six principal clades and one additional independent lineage (consisting of a single genus) within Pteropodidae. Reciprocal monophyly of these groups was highly supported and generally congruent among the different methods and datasets used. Likewise, most relationships within these principal clades were well resolved and statistically supported. Relationships among the 7 principal groups, however, were poorly supported in all analyses. This result could not be explained by any detectable systematic bias in the data or incongruence among loci. The SOWH test confirmed that basal branches' lengths were not different from zero, which points to closely-spaced cladogenesis as the most likely explanation for the poor resolution of the deep pteropodid relationships. Simulations suggest that an increase in the amount of sequence data is likely to solve this problem. Conclusions The phylogenetic hypothesis generated here provides a robust framework for a revised cladistic classification of Pteropodidae into subfamilies and tribes and will greatly contribute to the understanding of character evolution and biogeography of pteropodids. The inability of our data to resolve the deepest relationships of the major pteropodid lineages suggests an explosive diversification soon after origin of the crown pteropodids. Several characteristics of pteropodids are consistent with this conclusion, including high species diversity, great morphological diversity, and presence of key innovations in relation to their sister group.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700