Understanding disease mechanisms with models of signaling pathway activities
详细信息    查看全文
  • 作者:Patricia Sebastian-Leon (1)
    Enrique Vidal (1) (2) (3)
    Pablo Minguez (1) (4)
    Ana Conesa (1)
    Sonia Tarazona (1)
    Alicia Amadoz (1)
    Carmen Armero (5)
    Francisco Salavert (1) (2)
    Antonio Vidal-Puig (6)
    David Montaner (1)
    Joaqu铆n Dopazo (1) (2) (7)

    1. Department of Computational Genomics
    ; Centro de Investigaci贸n Pr铆ncipe Felipe (CIPF) ; Avda. Autopista del Saler ; 16 ; 46012 ; Valencia ; Spain
    2. BIER
    ; CIBER de Enfermedades Raras (CIBERER) ; Valencia ; 46012 ; Spain
    3. Present Address
    ; Cancer Epigenetics and Biology Program (PEBC) ; Bellvitge Biomedical Research Institute (IDIBELL) ; L鈥橦ospitalet de Llobregat ; Barcelona ; Spain
    4. Present Address
    ; Structural and Computational Biology ; European Molecular Biology Laboratory ; Heidelberg ; 69117 ; Germany
    5. Department of Statistics and Operations Research
    ; University of Valencia ; Valencia ; 46100 ; Spain
    6. Institute of Metabolic Science - Metabolic Research Laboratories and Department of Clinical Biochemistry
    ; University of Cambridge ; Addenbrooke鈥檚 Hospital ; Cambridge ; CB2 0QQ ; UK
    7. Functional Genomics Node
    ; (INB) at CIPF ; Valencia ; Spain
  • 关键词:Signaling pathways ; Probabilistic model ; Disease mechanism ; Precision medicine ; Disease mechanism ; Cancer ; Fanconi anemia ; Obesity ; Stem cells
  • 刊名:BMC Systems Biology
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:8
  • 期:1
  • 全文大小:1,756 KB
  • 参考文献:1. Mirnezami, R, Nicholson, J, Darzi, A (2012) Preparing for precision medicine. N Engl J Med 366: pp. 489-491 CrossRef
    2. Huang, W, Sherman, BT, Lempicki, RA (2009) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37: pp. 1-13 CrossRef
    3. Al-Shahrour, F, Diaz-Uriarte, R, Dopazo, J (2004) FatiGO: a web tool for finding significant associations of Gene Ontology terms with groups of genes. Bioinformatics 20: pp. 578-580 CrossRef
    4. Doniger, SW, Salomonis, N, Dahlquist, KD, Vranizan, K, Lawlor, SC, Conklin, BR (2003) MAPPFinder: using Gene Ontology and GenMAPP to create a global gene-expression profile from microarray data. Genome Biol 4: pp. R7 CrossRef
    5. Dennis, G, Sherman, BT, Hosack, DA, Yang, J, Gao, W, Lane, HC, Lempicki, RA (2003) DAVID: database for annotation, visualization, and integrated discovery. Genome Biol 4: pp. 3 CrossRef
    6. Khatri, P, Bhavsar, P, Bawa, G, Draghici, S (2004) Onto-Tools: an ensemble of web-accessible, ontology-based tools for the functional design and interpretation of high-throughput gene expression experiments. Nucleic Acids Res 32: pp. W449-W456 CrossRef
    7. Zeeberg, BR, Feng, W, Wang, G, Wang, MD, Fojo, AT, Sunshine, M, Narasimhan, S, Kane, DW, Reinhold, WC, Lababidi, S, Bussey, KJ, Riss, J, Barrett, JC, Weinstein, JN (2003) GoMiner: a resource for biological interpretation of genomic and proteomic data. Genome Biol 4: pp. R28 CrossRef
    8. Khatri, P, Draghici, S (2005) Ontological analysis of gene expression data: current tools, limitations, and open problems. Bioinformatics 21: pp. 3587-3595 CrossRef
    9. Ashburner, M, Ball, CA, Blake, JA, Botstein, D, Butler, H, Cherry, JM, Davis, AP, Dolinski, K, Dwight, SS, Eppig, JT, Harris, MA, Hill, DP, Issel-Tarver, L, Kasarskis, A, Lewis, S, Matese, JC, Richardson, JE, Ringwald, M, Rubin, GM, Sherlock, G (2000) Gene ontology: tool for the unification of biology: the gene ontology consortium. Nat Genet 25: pp. 25-29 CrossRef
    10. Kanehisa, M, Goto, S, Sato, Y, Furumichi, M, Tanabe, M (2012) KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res 40: pp. D109-D114 CrossRef
    11. Mootha, VK, Lindgren, CM, Eriksson, KF, Subramanian, A, Sihag, S, Lehar, J, Puigserver, P, Carlsson, E, Ridderstrale, M, Laurila, E, Houstis, N, Daly, MJ, Patterson, N, Mesirov, JP, Golub, TR, Tamayo, P, Spiegelman, B, Lander, ES, Hirschhorn, JN, Altshuler, D, Groop, LC (2003) PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet 34: pp. 267-273 CrossRef
    12. Goeman, JJ, Buhlmann, P (2007) Analyzing gene expression data in terms of gene sets: methodological issues. Bioinformatics 23: pp. 980-987 CrossRef
    13. Dopazo, J (2009) Formulating and testing hypotheses in functional genomics. Artif Intell Med 45: pp. 97-107 CrossRef
    14. Nam, D, Kim, SY (2008) Gene-set approach for expression pattern analysis. Brief Bioinform 9: pp. 189-197 CrossRef
    15. Al-Shahrour, F, Arbiza, L, Dopazo, H, Huerta-Cepas, J, Minguez, P, Montaner, D, Dopazo, J (2007) From genes to functional classes in the study of biological systems. BMC Bioinformatics 8: pp. 114 CrossRef
    16. Tarca, AL, Bhatti, G, Romero, R (2013) A comparison of gene set analysis methods in terms of sensitivity, prioritization and specificity. PLoS One 8: pp. e79217 CrossRef
    17. Montaner, D, Minguez, P, Al-Shahrour, F, Dopazo, J (2009) Gene set internal coherence in the context of functional profiling. BMC Genomics 10: pp. 197 CrossRef
    18. Vastrik, I, D'Eustachio, P, Schmidt, E, Joshi-Tope, G, Gopinath, G, Croft, D, Bono, B, Gillespie, M, Jassal, B, Lewis, S, Matthews, L, Wu, G, Birney, E, Stein, L (2007) Reactome: a knowledge base of biologic pathways and processes. Genome Biol 8: pp. R39 CrossRef
    19. Davis, MJ, Ragan, MA (2013) Understanding cellular function and disease with comparative pathway analysis. Genome Med 5: pp. 64 CrossRef
    20. Khatri, P, Sirota, M, Butte, AJ (2012) Ten years of pathway analysis: current approaches and outstanding challenges. PLoS Comput Biol 8: pp. e1002375 CrossRef
    21. Rahnenfuhrer, J, Domingues, FS, Maydt, J, Lengauer, T (2004) Calculating the statistical significance of changes in pathway activity from gene expression data. Stat Appl Genet Mol Biol 3: pp. Article16
    22. Draghici, S, Khatri, P, Tarca, AL, Amin, K, Done, A, Voichita, C, Georgescu, C, Romero, R (2007) A systems biology approach for pathway level analysis. Genome Res 17: pp. 1537-1545 CrossRef
    23. Tarca, AL, Draghici, S, Khatri, P, Hassan, SS, Mittal, P, Kim, JS, Kim, CJ, Kusanovic, JP, Romero, R (2009) A novel signaling pathway impact analysis. Bioinformatics 25: pp. 75-82 CrossRef
    24. Shojaie, A, Michailidis, G (2009) Analysis of gene sets based on the underlying regulatory network. J Comput Biol 16: pp. 407-426 CrossRef
    25. Liu, Y, Koyuturk, M, Barnholtz-Sloan, JS, Chance, MR (2012) Gene interaction enrichment and network analysis to identify dysregulated pathways and their interactions in complex diseases. BMC Syst Biol 6: pp. 65 CrossRef
    26. Efroni, S, Schaefer, CF, Buetow, KH (2007) Identification of key processes underlying cancer phenotypes using biologic pathway analysis. PLoS One 2: pp. e425 CrossRef
    27. Lee, E, Chuang, HY, Kim, JW, Ideker, T, Lee, D (2008) Inferring pathway activity toward precise disease classification. PLoS Comput Biol 4: pp. e1000217 CrossRef
    28. Martini, P, Sales, G, Massa, MS, Chiogna, M, Romualdi, C (2013) Along signal paths: an empirical gene set approach exploiting pathway topology. Nucleic Acids Res 41: pp. e19 CrossRef
    29. Haynes, WA, Higdon, R, Stanberry, L, Collins, D, Kolker, E (2013) Differential expression analysis for pathways. PLoS Comput Biol 9: pp. e1002967 CrossRef
    30. Nam, S, Park, T (2012) Pathway-based evaluation in early onset colorectal cancer suggests focal adhesion and immunosuppression along with epithelial-mesenchymal transition. PLoS One 7: pp. e31685 CrossRef
    31. Jacob, L, Neuvial, P, Dudoit, S (2012) More power via graph-structured tests for differential expression of gene networks. Ann Appl Stat 6: pp. 561-600 CrossRef
    32. Chen, X, Xu, J, Huang, B, Li, J, Wu, X, Ma, L, Jia, X, Bian, X, Tan, F, Liu, L, Chen, S, Li, X (2011) A sub-pathway-based approach for identifying drug response principal network. Bioinformatics 27: pp. 649-654 CrossRef
    33. Ibrahim, MA, Jassim, S, Cawthorne, MA, Langlands, K (2012) A topology-based score for pathway enrichment. J Comput Biol 19: pp. 563-573 CrossRef
    34. Emmert-Streib, F (2007) The chronic fatigue syndrome: a comparative pathway analysis. J Comput Biol 14: pp. 961-972 CrossRef
    35. Thomas, R, Gohlke, JM, Stopper, GF, Parham, FM, Portier, CJ (2009) Choosing the right path: enhancement of biologically relevant sets of genes or proteins using pathway structure. Genome Biol 10: pp. R44 CrossRef
    36. Judeh, T, Johnson, C, Kumar, A, Zhu, D (2013) TEAK: topology enrichment analysis framework for detecting activated biological subpathways. Nucleic Acids Res 41: pp. 1425-1437 CrossRef
    37. Saez-Rodriguez, J, Alexopoulos, LG, Epperlein, J, Samaga, R, Lauffenburger, DA, Klamt, S, Sorger, PK (2009) Discrete logic modelling as a means to link protein signalling networks with functional analysis of mammalian signal transduction. Mol Syst Biol 5: pp. 331 CrossRef
    38. Samaga, R, Saez-Rodriguez, J, Alexopoulos, LG, Sorger, PK, Klamt, S (2009) The logic of EGFR/ErbB signaling: theoretical properties and analysis of high-throughput data. PLoS Comput Biol 5: pp. e1000438 CrossRef
    39. Gupta, S, Bisht, SS, Kukreti, R, Jain, S, Brahmachari, SK (2007) Boolean network analysis of a neurotransmitter signaling pathway. J Theor Biol 244: pp. 463-469 CrossRef
    40. Zhang, R, Shah, MV, Yang, J, Nyland, SB, Liu, X, Yun, JK, Albert, R, Loughran, TP (2008) Network model of survival signaling in large granular lymphocyte leukemia. Proc Natl Acad Sci U S A 105: pp. 16308-16313 CrossRef
    41. Helikar, T, Konvalina, J, Heidel, J, Rogers, JA (2008) Emergent decision-making in biological signal transduction networks. Proc Natl Acad Sci U S A 105: pp. 1913-1918 CrossRef
    42. Spink, BC, Bennett, JA, Pentecost, BT, Lostritto, N, Englert, NA, Benn, GK, Goodenough, AK, Turesky, RJ, Spink, DC (2009) Long-term estrogen exposure promotes carcinogen bioactivation, induces persistent changes in gene expression, and enhances the tumorigenicity of MCF-7 human breast cancer cells. Toxicol Appl Pharmacol 240: pp. 355-366 CrossRef
    43. Balgobind, BV, Heuvel-Eibrink, MM, Menezes, RX, Reinhardt, D, Hollink, IH, Arentsen-Peters, ST, Wering, ER, Kaspers, GJ, Cloos, J, De Bont, ES, Cayuela, JM, Baruchel, A, Meyer, C, Marschalek, R, Trka, J, Stary, J, Beverloo, HB, Pieters, R, Zwaan, CM, Den Boer, ML (2011) Evaluation of gene expression signatures predictive of cytogenetic and molecular subtypes of pediatric acute myeloid leukemia. Haematologica 96: pp. 221-230 CrossRef
    44. LaBreche, HG, Nevins, JR, Huang, E (2011) Integrating factor analysis and a transgenic mouse model to reveal a peripheral blood predictor of breast tumors. BMC Med Genomics 4: pp. 61 CrossRef
    45. Stirewalt, DL, Meshinchi, S, Kopecky, KJ, Fan, W, Pogosova-Agadjanyan, EL, Engel, JH, Cronk, MR, Dorcy, KS, McQuary, AR, Hockenbery, D, Wood, B, Heimfeld, S, Radich, JP (2008) Identification of genes with abnormal expression changes in acute myeloid leukemia. Genes Chromosomes Cancer 47: pp. 8-20 CrossRef
    46. Vapnik, V (1999) Statistical Learning Theory. John Wiley and Sons, New York
    47. Shi, L, Campbell, G, Jones, WD, Campagne, F, Wen, Z, Walker, SJ, Su, Z, Chu, TM, Goodsaid, FM, Pusztai, L, Shaughnessy, JD, Oberthuer, A, Thomas, RS, Paules, RS, Fielden, M, Barlogie, B, Chen, W, Du, P, Fischer, M, Furlanello, C, Gallas, BD, Ge, X, Megherbi, DB, Symmans, WF, Wang, MD, Zhang, J, Bitter, H, Brors, B, Bushel, PR, Bylesjo, M (2010) The MicroArray Quality Control (MAQC)-II study of common practices for the development and validation of microarray-based predictive models. Nat Biotechnol 28: pp. 827-838 CrossRef
    48. Hong, Y, Ho, KS, Eu, KW, Cheah, PY (2007) A susceptibility gene set for early onset colorectal cancer that integrates diverse signaling pathways: implication for tumorigenesis. Clin Cancer Res 13: pp. 1107-1114 CrossRef
    49. Xiong, H, Zhang, ZG, Tian, XQ, Sun, DF, Liang, QC, Zhang, YJ, Lu, R, Chen, YX, Fang, JY (2008) Inhibition of JAK1, 2/STAT3 signaling induces apoptosis, cell cycle arrest, and reduces tumor cell invasion in colorectal cancer cells. Neoplasia 10: pp. 287-297
    50. Spano, JP, Milano, G, Rixe, C, Fagard, R (2006) JAK/STAT signalling pathway in colorectal cancer: a new biological target with therapeutic implications. Eur J Cancer 42: pp. 2668-2670 CrossRef
    51. Wang, Y (2009) Wnt/Planar cell polarity signaling: a new paradigm for cancer therapy. Mol Cancer Ther 8: pp. 2103-2109 CrossRef
    52. McMahon, G (2000) VEGF receptor signaling in tumor angiogenesis. Oncologist 5: pp. 3-10 CrossRef
    53. Wang, J, Ikeda, R, Che, XF, Ooyama, A, Yamamoto, M, Furukawa, T, Hasui, K, Zheng, CL, Tajitsu, Y, Oka, T, Tabata, S, Nishizawa, Y, Eizuru, Y, Akiyama, S (2013) VEGF expression is augmented by hypoxiainduced PGIS in human fibroblasts. Int J Oncol 43: pp. 746-754
    54. Rao, M, Yang, W, Seifalian, AM, Winslet, MC (2004) Role of cyclooxygenase-2 in the angiogenesis of colorectal cancer. Int J Colorectal Dis 19: pp. 1-11 CrossRef
    55. Fukuda, R, Kelly, B, Semenza, GL (2003) Vascular endothelial growth factor gene expression in colon cancer cells exposed to prostaglandin E2 is mediated by hypoxia-inducible factor 1. Cancer Res 63: pp. 2330-2334
    56. Prieur, X, Mok, CY, Velagapudi, VR, Nunez, V, Fuentes, L, Montaner, D, Ishikawa, K, Camacho, A, Barbarroja, N, O'Rahilly, S, Sethi, JK, Dopazo, J, Oresic, M, Ricote, M, Vidal-Puig, A (2011) Differential lipid partitioning between adipocytes and tissue macrophages modulates macrophage lipotoxicity and M2/M1 polarization in obese mice. Diabetes 60: pp. 797-809 CrossRef
    57. Alligier, M, Meugnier, E, Debard, C, Lambert-Porcheron, S, Chanseaume, E, Sothier, M, Loizon, E, Hssain, AA, Brozek, J, Scoazec, JY, Morio, B, Vidal, H, Laville, M (2012) Subcutaneous adipose tissue remodeling during the initial phase of weight gain induced by overfeeding in humans. J Clin Endocrinol Metab 97: pp. E183-E192 CrossRef
    58. Oh, DY, Olefsky, JM (2010) Medicine: Wnt fans the flames in obesity. Science 329: pp. 397-398 CrossRef
    59. Hu, D, Fukuhara, A, Miyata, Y, Yokoyama, C, Otsuki, M, Kihara, S, Shimomura, I (2013) Adiponectin regulates vascular endothelial growth factor-C expression in macrophages via Syk-ERK pathway. PLoS One 8: pp. e56071 CrossRef
    60. Chambers, SM, Shaw, CA, Gatza, C, Fisk, CJ, Donehower, LA, Goodell, MA (2007) Aging hematopoietic stem cells decline in function and exhibit epigenetic dysregulation. PLoS Biol 5: pp. e201 CrossRef
    61. Pang, WW, Price, EA, Sahoo, D, Beerman, I, Maloney, WJ, Rossi, DJ, Schrier, SL, Weissman, IL (2011) Human bone marrow hematopoietic stem cells are increased in frequency and myeloid-biased with age. Proc Natl Acad Sci U S A 108: pp. 20012-20017 CrossRef
    62. Taniguchi, T, D'Andrea, AD (2006) Molecular pathogenesis of Fanconi anemia: recent progress. Blood 107: pp. 4223-4233 CrossRef
    63. Ridet, A, Guillouf, C, Duchaud, E, Cundari, E, Fiore, M, Moustacchi, E, Rosselli, F (1997) Deregulated apoptosis is a hallmark of the Fanconi anemia syndrome. Cancer Res 57: pp. 1722-1730
    64. Vanderwerf, SM, Svahn, J, Olson, S, Rathbun, RK, Harrington, C, Yates, J, Keeble, W, Anderson, DC, Anur, P, Pereira, NF, Pilonetto, DV, Pasquini, R, Bagby, GC (2009) TLR8-dependent TNF-(alpha) overexpression in Fanconi anemia group C cells. Blood 114: pp. 5290-5298 CrossRef
    65. Weksberg, R, Buchwald, M, Sargent, P, Thompson, MW, Siminovitch, L (1979) Specific cellular defects in patients with Fanconi anemia. J Cell Physiol 101: pp. 311-323 CrossRef
    66. Joenje, H, Patel, KJ (2001) The emerging genetic and molecular basis of Fanconi anaemia. Nat Rev Genet 2: pp. 446-457 CrossRef
    67. Sales, G, Calura, E, Martini, P, Romualdi, C (2013) Graphite Web: web tool for gene set analysis exploiting pathway topology. Nucleic Acids Res 41: pp. W89-W97 CrossRef
    68. Calviello, G, Nicuolo, F, Gragnoli, S, Piccioni, E, Serini, S, Maggiano, N, Tringali, G, Navarra, P, Ranelletti, FO, Palozza, P (2004) n-3 PUFAs reduce VEGF expression in human colon cancer cells modulating the COX-2/PGE2 induced ERK-1 and -2 and HIF-1alpha induction pathway. Carcinogenesis 25: pp. 2303-2310 CrossRef
    69. Hurwitz, H, Fehrenbacher, L, Novotny, W, Cartwright, T, Hainsworth, J, Heim, W, Berlin, J, Baron, A, Griffing, S, Holmgren, E, Ferrara, N, Fyfe, G, Rogers, B, Ross, R, Kabbinavar, F (2004) Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 350: pp. 2335-2342 CrossRef
    70. Montaner, D, Dopazo, J (2010) Multidimensional gene set analysis of genomic data. PLoS One 5: pp. e10348 CrossRef
    71. Westerhoff, HV, Palsson, BO (2004) The evolution of molecular biology into systems biology. Nat Biotechnol 22: pp. 1249-1252 CrossRef
    72. Loscalzo, J, Barabasi, AL (2011) Systems biology and the future of medicine. Wiley Interdiscip Rev Syst Biol Med 3: pp. 619-627 CrossRef
    73. Ioannidis, JP, Allison, DB, Ball, CA, Coulibaly, I, Cui, X, Culhane, AC, Falchi, M, Furlanello, C, Game, L, Jurman, G, Mangion, J, Mehta, T, Nitzberg, M, Page, GP, Petretto, E, Van Noort, V (2009) Repeatability of published microarray gene expression analyses. Nat Genet 41: pp. 149-155 CrossRef
    74. Ioannidis, JP, Ntzani, EE, Trikalinos, TA, Contopoulos-Ioannidis, DG (2001) Replication validity of genetic association studies. Nat Genet 29: pp. 306-309 CrossRef
    75. Schadt, EE (2009) Molecular networks as sensors and drivers of common human diseases. Nature 461: pp. 218-223 CrossRef
    76. Barabasi, AL, Gulbahce, N, Loscalzo, J (2011) Network medicine: a network-based approach to human disease. Nat Rev Genet 12: pp. 56-68 CrossRef
    77. Vidal, M, Cusick, ME, Barabasi, AL (2011) Interactome networks and human disease. Cell 144: pp. 986-998 CrossRef
    78. Kauffman, SA (1969) Metabolic stability and epigenesis in randomly constructed genetic nets. J Theor Biol 22: pp. 437-467 CrossRef
    79. Huang, S, Ingber, DE (2000) Shape-dependent control of cell growth, differentiation, and apoptosis: switching between attractors in cell regulatory networks. Exp Cell Res 261: pp. 91-103 CrossRef
    80. Jong, H (2002) Modeling and simulation of genetic regulatory systems: a literature review. J Comput Biol 9: pp. 67-103 CrossRef
    81. Mitsos, A, Melas, IN, Siminelakis, P, Chairakaki, AD, Saez-Rodriguez, J, Alexopoulos, LG (2009) Identifying drug effects via pathway alterations using an integer linear programming optimization formulation on phosphoproteomic data. PLoS Comput Biol 5: pp. e1000591 CrossRef
    82. Wang, Z, Gerstein, M, Snyder, M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10: pp. 57-63 CrossRef
    83. Tarazona, S, Garcia-Alcalde, F, Dopazo, J, Ferrer, A, Conesa, A (2011) Differential expression in RNA-seq: a matter of depth. Genome Res 21: pp. 2213-2223 CrossRef
    84. Dopazo, J (2014) Genomics and transcriptomics in drug discovery. Drug Discov Today 19: pp. 126-132 CrossRef
    85. Laird, PW (2010) Principles and challenges of genomewide DNA methylation analysis. Nat Rev Genet 11: pp. 191-203 CrossRef
    86. Barrett, T, Troup, DB, Wilhite, SE, Ledoux, P, Rudnev, D, Evangelista, C, Kim, IF, Soboleva, A, Tomashevsky, M, Edgar, R (2007) NCBI GEO: mining tens of millions of expression profiles鈥揹atabase and tools update. Nucleic Acids Res 35: pp. D760-D765 CrossRef
    87. Gentleman, RC, Carey, VJ, Bates, DM, Bolstad, B, Dettling, M, Dudoit, S, Ellis, B, Gautier, L, Ge, Y, Gentry, J, Hornik, K, Hothorn, T, Huber, W, Iacus, S, Irizarry, R, Leisch, F, Li, C, Maechler, M, Rossini, AJ, Sawitzki, G, Smith, C, Smyth, G, Tierney, L, Yang, JY, Zhang, J (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5: pp. R80 CrossRef
    88. Smyth, G Limma: linear models for microarray data. In: Gentleman, R, Carey, V, Dudoit, S, Irizarry, R, Huber, W eds. (2005) Bioinformatics and Computational Biology Solutions using R and Bioconductor. Springer, New York, pp. 397-420 CrossRef
    89. Medina, I, Carbonell, J, Pulido, L, Madeira, SC, Goetz, S, Conesa, A, Tarraga, J, Pascual-Montano, A, Nogales-Cadenas, R, Santoyo, J, Garcia, F, Marba, M, Montaner, D, Dopazo, J (2010) Babelomics: an integrative platform for the analysis of transcriptomics, proteomics and genomic data with advanced functional profiling. Nucleic Acids Res 38: pp. W210-W213 CrossRef
    90. Dijkstra, E (1959) A note on two problems in connexion with graphs. Numer Math 1: pp. 269-271 CrossRef
    91. mixdist: Finite Mixture Distribution Models. In [dex.html" class="a-plus-plus">http://cran.r-project.org/web/packages/mixdist/index.html]
    92. Efroni, S, Carmel, L, Schaefer, CG, Buetow, KH (2008) Superposition of transcriptional behaviors determines gene state. PLoS One 3: pp. e2901 CrossRef
    93. Efron, B, Tibshirani, R (2002) Empirical bayes methods and false discovery rates for microarrays. Genet Epidemiol 23: pp. 70-86 CrossRef
    94. Li, Q, Birkbak, NJ, Gyorffy, B, Szallasi, Z, Eklund, AC (2011) Jetset: selecting the optimal microarray probe set to represent a gene. BMC Bioinformatics 12: pp. 474 CrossRef
    95. Sales, G, Calura, E, Cavalieri, D, Romualdi, C (2012) Graphite - a bioconductor package to convert pathway topology to gene network. BMC Bioinformatics 13: pp. 20 CrossRef
    96. Wilcoxon, F (1945) Individual comparisons by ranking methods. Biom Bull 1: pp. 80-83 CrossRef
    97. Benjamini, Y, Hochberg, Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B 57: pp. 289-300
    98. Sebastian-Leon, P, Carbonell, J, Salavert, F, Sanchez, R, Medina, I, Dopazo, J (2013) Inferring the functional effect of gene expression changes in signaling pathways. Nucleic Acids Res 41: pp. W213-W217 CrossRef
    99. Csardi G, Nepusz T: The igraph software package for complex network research. / InterJ Complex Systems 2006, 1695.
  • 刊物主题:Bioinformatics; Systems Biology; Simulation and Modeling; Computational Biology/Bioinformatics; Physiological, Cellular and Medical Topics; Algorithms;
  • 出版者:BioMed Central
  • ISSN:1752-0509
文摘
Background Understanding the aspects of the cell functionality that account for disease or drug action mechanisms is one of the main challenges in the analysis of genomic data and is on the basis of the future implementation of precision medicine. Results Here we propose a simple probabilistic model in which signaling pathways are separated into elementary sub-pathways or signal transmission circuits (which ultimately trigger cell functions) and then transforms gene expression measurements into probabilities of activation of such signal transmission circuits. Using this model, differential activation of such circuits between biological conditions can be estimated. Thus, circuit activation statuses can be interpreted as biomarkers that discriminate among the compared conditions. This type of mechanism-based biomarkers accounts for cell functional activities and can easily be associated to disease or drug action mechanisms. The accuracy of the proposed model is demonstrated with simulations and real datasets. Conclusions The proposed model provides detailed information that enables the interpretation disease mechanisms as a consequence of the complex combinations of altered gene expression values. Moreover, it offers a framework for suggesting possible ways of therapeutic intervention in a pathologically perturbed system.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700