Liouville type results for local minimizers of the micromagnetic energy
详细信息    查看全文
  • 作者:Fran?ois Alouges ; Giovanni Di Fratta
  • 关键词:35B35 ; 35B53 ; 49K20 ; 49K40 ; 49S05 ; 74G65 ; 82D40
  • 刊名:Calculus of Variations and Partial Differential Equations
  • 出版年:2015
  • 出版时间:July 2015
  • 年:2015
  • 卷:53
  • 期:3-4
  • 页码:525-560
  • 全文大小:780 KB
  • 参考文献:1.Aharoni, A.: Elongated single-domain ferromagnetic particles. J. Appl. Phys. 63(12), 5879-882 (1988)
    2.Alouges, F., Beauchard, K.: Magnetization switching on small ferromagnetic ellipsoidal samples. ESAIM Control Optim. Calc. Var. 15(3), 676-11 (2009)
    3.Alouges, F., Conti, S., DeSimone, A., Pokern, Y.: Energetics and switching of quasi-uniform states in small ferromagnetic particles. M2AN 38(2), 235-48 (2004)View Article MATH MathSciNet
    4.Alouges, F., Faure, S., Steiner, J.: The vortex core structure inside spherical ferromagnetic particles. Disc. Cont. Dyn. Syst. A 27(4), 1259-283 (2010)View Article MATH MathSciNet
    5.Bebendorf, M.: A note on the Poincaré inequality for convex domains. Z. Anal. Anwend. 22(4), 751-56 (2003)
    6.Brown, W.F.: The fundamental theorem of the theory of fine ferromagnetic particles. J. Appl. Phys. 39, 463-88 (1968)
    7.Brown, W.F.: Magnetostatic Principles in Ferromagnetism. North-Holland Publishing Co, Amsterdam (1962)
    8.Carbou, G., Fabrie, P.: Regular solutions for Landau–Lifschitz equation in a bounded domain. Differ. Integr. Equ. 14(2), 213-29 (2001)
    9.Cowburn, R.P., Welland, M.E.: Micromagnetics of the single-domain state of square ferromagnetic nanostructures. Phys. Rev. B 58, 9217-226 (1998)
    10.DeSimone, A.: Hysteresis and imperfection sensitivity in small ferromagnetic particles. Meccanica 30(5), 591-03 (1995). Microstructure and phase transitions in solids (Udine, 1994)
    11.Di Fratta, G., Serpico, C., D’Aquino, M.: A generalization of the fundamental theorem of brown for fine ferromagnetic particles. Physica. B 407(9), 1368-371 (2011)
    12.Eells, J., Lemaire, L.: A report on harmonic maps. Bull. Lond. Math. Soc. 10(1), 1-8 (1978)
    13.Eells, J., Lemaire, L.: Another report on harmonic maps. Bull. Lond. Math. Soc. 20(5), 385-24 (1988)
    14.Eells, J., Lemaire, L.: Selected topics in harmonic maps, volume 50 of CBMS Regional Conference Series in Mathematics. Published for the Conference Board of the Mathematical Sciences, Washington DC (1983)
    15.Eells, James, Lemaire, Luc: Two Reports on Harmonic Maps. World Scientific Publishing Co., Inc., River Edge (1995)View Article MATH
    16.Fuchs, M.: \(P\) -harmonic obstacle problems I. Partial regularity theory. Ann. Mat. Pura Appl. 156(4), 127-58 (1990)
    17.Fuchs, M.: The blow-up of \(p\) -harmonic maps. Manuscripta Math. 81(1-), 89-4 (1993)
    18.Hardt, R., Kinderlehrer, D., Lin, F.-H.: Stable defects of minimizers of constrained variational principles. Ann. Inst. H. Poincaré Anal. Non Linéaire, 5(4), 297-22 (1988)
    19.Hardt, R.M.: Singularities of harmonic maps. Bull. Am. Math. Soc. (N.S.) 34(1), 15-4 (1997)
    20.Hardt, R., Kinderlehrer, D.: Some regularity results in ferromagnetism. Comm. Partial Differ. Equ. 25(7-), 1235-258 (2000)View Article MATH MathSciNet
    21.Hubert, A., Sch?fer, R.: Magnetic Domains. Springer, Berlin, Heidelberg (1998)
    22.Hélein, F., Wood, J.C.: Harmonic maps. In: Proceedings of Handbook of Global Analysis, Elsevier, Amsterdam (2008), 417-91
    23.Kellogg, O.D.: Foundations of Potential Theory. Grundlehren der mathematischen Wissenschaften. Springer, Berlin, Heidelberg (1967)
    24.Luckhaus, S.: Partial H?lder continuity for minima of certain energies among maps into a Riemannian manifold. Indiana Univ. Math. J. 37(2), 349-67 (1988)
    25.Morrey Jr C.B.: The problem of plateau on a Riemannian manifold. Ann. Math. 49(2), 807-51 (1948)
    26.Maxwell, J.C.: A treatise on electricity and magnetism. In: Proceedings of Oxford Classic Texts in the Physical Sciences vol. 2. The Clarendon Press Oxford University Press, New York (1998). Reprint of the third (1891) edition
    27.Osborn, J.A.: Demagnetizing factors of the general ellipsoid. Phys. Rev. 67(11,12), 351-57 (1945)
    28.Payne, L.E., Weinberger, H.F.: An optimal Poincaré inequality for convex domains. Arch. Ration. Mech. Anal. 5, 286-92 (1960)
    29.Scheven, Christoph: Partial regularity for stationary harmonic maps at a free boundary. Math. Z. 253(1), 135-57 (2006)View Article MATH MathSciNet
    30.Schoen, R., Uhlenbeck, K.: A regularity theory for harmonic maps. J. Differ. Geom. 17(2), 307-35 (1982)
    31.Slastikov, V.V.: A note on configurational anisotropy. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 466(2123), 3167-179 (2010)
    32.Stoner, E.C., Wohlfarth, E.P.: A mechanism of magnetic hysteresis in heterogeneous alloys. Phil. Trans. R. Soc. Lond. Ser. A 240, 3475-518 (1948)
    33.Simon, L.: Lectures on geometric measure theory. In: Proceedings of the Centre for Mathematical Analysis, Australian National University, vol. 3. Australian National University Centre for Mathematical Analysis, Canberra (1983)
  • 作者单位:Fran?ois Alouges (1)
    Giovanni Di Fratta (2)
    Benoit Merlet (1)

    1. CMAP, école Polytechnique, route de Saclay, 91128?, Palaiseau Cedex, France
    2. School of Mathematics, University of Bristol, Bristol, UK
  • 刊物类别:Mathematics and Statistics
  • 刊物主题:Mathematics
    Analysis
    Systems Theory and Control
    Calculus of Variations and Optimal Control
    Mathematical and Computational Physics
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-0835
文摘
We study local minimizers of the micromagnetic energy in small ferromagnetic 3d convex particles for which we justify the Stoner–Wohlfarth approximation: given a uniformly convex shape \(\Omega \subset \varvec{\mathbf {R}}^3\), there exist \(\delta _c\)&gt;0 and \(C &gt; 0\) such that for \(0 < \delta \le \delta _c\) any local minimizer \(\mathbf {m}\) of the micromagnetic energy in the particle \(\delta \Omega \) satisfies \(\Vert \nabla \mathbf {m} \Vert _{L^2} \leqslant C \delta ^2\). In the case of ellipsoidal particles we strengthen this result by proving that, for \(\delta \) small enough, local minimizers are exactly spatially uniform. This last result extends W.F. Brown’s fundamental theorem for fine 3d ferromagnetic particles Brown (J Appl Phys 39:463-88, 1968), Di Fratta et al. (Physica B 407(9):1368-371, 2011) which states the same result but only for global minimizers. As a by-product of the method that we use, we establish a new Liouville type result for locally minimizing \(p\)-harmonic maps with values into a closed subset of a Hilbert space. Namely, we establish that in a smooth uniformly convex domain of \(\mathbf {R}^d\) any local minimizer of the \(p\)-Dirichlet energy (\(p &gt; 1\), \(p \ne d\)) is constant.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700