15N NMR HSQC spectra of His8-Tcl-1 and of His8-GFP prepared from 50?ml cultures showed excellent chemical shift dispersion, consistent with well folded states in solution suitable for structure determination. Moreover, AIA–GFP obtained by proteolytic removal of the His8 tag was subjected to crystallization screening, and yielded crystals under several conditions. Single crystals were subsequently produced and optimized by the hanging drop method. The structure was solved by molecular replacement at a resolution of 1.7??. This approach provides an efficient way to carry out several key target screening steps that are essential for successful operation of proteomics pipelines with eukaryotic proteins: examination of total expression, determination of proteolysis of fusion tags, quantification of the yield of purified protein, and suitability for structure determination." />
Small-scale, semi-automated purification of eukaryotic proteins for structure determination
详细信息    查看全文
  • 作者:Ronnie O. Frederick (1)
    Lai Bergeman (1)
    Paul G. Blommel (1)
    Lucas J. Bailey (1)
    Jason G. McCoy (1)
    Jikui Song (1)
    Louise Meske (1)
    Craig A. Bingman (1)
    Megan Riters (1)
    Nicholas A. Dillon (1)
    John Kunert (1)
    Jung Whan Yoon (1)
    Ahyoung Lim (1)
    Michael Cassidy (1)
    Jason Bunge (1)
    David J. Aceti (1)
    John G. Primm (1)
    John L. Markley (1)
    George N. Phillips Jr (1)
    Brian G. Fox (1)
  • 关键词:Eukaryotic protein ; Protein production ; Protein purification ; NMR ; X ; ray crystallography ; Protein Structure Initiative ; Maxwell
  • 刊名:Journal of Structural and Functional Genomics
  • 出版年:2007
  • 出版时间:December 2007
  • 年:2007
  • 卷:8
  • 期:4
  • 页码:153-166
  • 全文大小:511KB
  • 参考文献:1. Knaust RK, Nordlund P (2001) Screening for soluble expression of recombinant proteins in a 96-well format. Anal Biochem 297:79-5 g/10.1006/abio.2001.5331">CrossRef
    2. Stevens RC (2000) Design of high-throughput methods of protein production for structural biology. Structure 8:R177-85 g/10.1016/S0969-2126(00)00193-3">CrossRef
    3. Kawasaki M, Inagaki F (2001) Random PCR-based screening for soluble domains using green fluorescent protein. Biochem Biophys Res Commun 280:842-44 g/10.1006/bbrc.2000.4229">CrossRef
    4. King DA, Hall BE, Iwamoto MA, Win KZ, Chang JF, Ellenberger T (2006) Domain structure and protein interactions of the silent information regulator Sir3 revealed by screening a nested deletion library of protein fragments. J Biol Chem 281:20107-0119 g/10.1074/jbc.M512588200">CrossRef
    5. Reich S, Puckey LH, Cheetham CL, Harris R, Ali AA, Bhattacharyya U, Maclagan K, Powell KA, Prodromou C, Pearl LH, Driscoll PC, Savva R (2006) Combinatorial domain hunting: an effective approach for the identification of soluble protein domains adaptable to high-throughput applications. Protein Sci 15:2356-365 g/10.1110/ps.062082606">CrossRef
    6. Kato A, Maki K, Ebina T, Kuwajima K, Soda K, Kuroda Y (2007) Mutational analysis of protein solubility enhancement using short peptide tags. Biopolymers 85:12-8 g/10.1002/bip.20596">CrossRef
    7. Zhou P, Lugovskoy AA, Wagner G (2001) A solubility-enhancement tag (SET) for NMR studies of poorly behaving proteins. J Biomol NMR 20:11-4 g/10.1023/A:1011258906244">CrossRef
    8. Garrard SM, Longenecker KL, Lewis ME, Sheffield PJ, Derewenda ZS (2001) Expression, purification, and crystallization of the RGS-like domain from the Rho nucleotide exchange factor, PDZ-RhoGEF, using the surface entropy reduction approach. Protein Expr Purif 21:412-16 g/10.1006/prep.2001.1392">CrossRef
    9. Derewenda ZS, Vekilov PG (2006) Entropy and surface engineering in protein crystallization. Acta Crystallogr D Biol Crystallogr 62:116-24 g/10.1107/S0907444905035237">CrossRef
    10. Rayment I (1997) Reductive alkylation of lysine residues to alter crystallization properties of proteins. Methods Enzymol 276:171-79 g/10.1016/S0076-6879(97)76058-0">CrossRef
    11. Galvao-Botton LM, Katsuyama AM, Guzzo CR, Almeida FC, Farah CS, Valente AP (2003) High-throughput screening of structural proteomics targets using NMR. FEBS Lett 552:207-13 g/10.1016/S0014-5793(03)00926-8">CrossRef
    12. Scheich C, Leitner D, Sievert V, Leidert M, Schlegel B, Simon B, Letunic I, Bussow K, Diehl A (2004) Fast identification of folded human protein domains expressed in / E. coli suitable for structural analysis. BMC Struct Biol 4:4 g/10.1186/1472-6807-4-4">CrossRef
    13. Chayen NE, Saridakis E (2002) Protein crystallization for genomics: towards high-throughput optimization techniques. Acta Crystallogr D Biol Crystallogr 58:921-27 g/10.1107/S0907444902005322">CrossRef
    14. Kimber MS, Vallee F, Houston S, Necakov A, Skarina T, Evdokimova E, Beasley S, Christendat D, Savchenko A, Arrowsmith CH, Vedadi M, Gerstein M, Edwards AM (2003) Data mining crystallization databases: knowledge-based approaches to optimize protein crystal screens. Proteins 51:562-68 g/10.1002/prot.10340">CrossRef
    15. Yee AA, Savchenko A, Ignachenko A, Lukin J, Xu X, Skarina T, Evdokimova E, Liu CS, Semesi A, Guido V, Edwards AM, Arrowsmith CH (2005) NMR and X-ray crystallography, complementary tools in structural proteomics of small proteins. J Am Chem Soc 127:16512-6517 g/10.1021/ja053565+">CrossRef
    16. Brenner SE (2000) Target selection for structural genomics. Nat Struct Biol 7(Suppl):967-69 g/10.1038/80747">CrossRef
    17. Smialowski P, Martin-Galiano AJ, Cox J, Frishman D (2007) Predicting experimental properties of proteins from sequence by machine learning techniques. Curr Protein Pept Sci 8:121-33 g/10.2174/138920307780363398">CrossRef
    18. Goh CS, Lan N, Douglas SM, Wu B, Echols N, Smith A, Milburn D, Montelione GT, Zhao H, Gerstein M (2004) Mining the structural genomics pipeline: identification of protein properties that affect high-throughput experimental analysis. J Mol Biol 336:115-30 g/10.1016/j.jmb.2003.11.053">CrossRef
    19. Watson JD, Todd AE, Bray J, Laskowski RA, Edwards A, Joachimiak A, Orengo CA, Thornton JM (2003) Target selection and determination of function in structural genomics. IUBMB Life 55:249-55
    20. Brodsky O, Cronin CN (2006) Economical parallel protein expression screening and scale-up in / Escherichia coli. J Struct Funct Genomics 7:101-08 g/10.1007/s10969-006-9013-0">CrossRef
    21. Canaves JM, Page R, Wilson IA, Stevens RC (2004) Protein biophysical properties that correlate with crystallization success in / Thermotoga maritima: maximum clustering strategy for structural genomics. J Mol Biol 344:977-91 g/10.1016/j.jmb.2004.09.076">CrossRef
    22. Nguyen H, Martinez B, Oganesyan N, Kim R (2004) An automated small-scale protein expression and purification screening provides beneficial information for protein production. J Struct Funct Genomics 5:23-7 g/10.1023/B:JSFG.0000029195.73810.86">CrossRef
    23. Page R, Moy K, Sims EC, Velasquez J, McManus B, Grittini C, Clayton TL, Stevens RC (2004) Scalable high-throughput micro-expression device for recombinant proteins. Biotechniques 37:364, 366, 368 passim
    24. Peti W, Page R, Moy K, O’Neil-Johnson M, Wilson IA, Stevens RC, Wuthrich K (2005) Towards miniaturization of a structural genomics pipeline using micro-expression and microcoil NMR. J Struct Funct Genomics 6:259-67 g/10.1007/s10969-005-9000-x">CrossRef
    25. Smialowski P, Schmidt T, Cox J, Kirschner A, Frishman D (2006) Will my protein crystallize? A sequence-based predictor. Proteins 62:343-55 g/10.1002/prot.20789">CrossRef
    26. Sugar FJ, Jenney FE Jr, Poole FL 2nd, Brereton PS, Izumi M, Shah C, Adams MW (2005) Comparison of small- and large-scale expression of selected Pyrococcus furiosus genes as an aid to high-throughput protein production. J Struct Funct Genomics 6:149-58 g/10.1007/s10969-005-3341-3">CrossRef
    27. Vincentelli R, Bignon C, Gruez A, Canaan S, Sulzenbacher G, Tegoni M, Campanacci V, Cambillau C (2003) Medium-scale structural genomics: strategies for protein expression and crystallization. Acc Chem Res 36:165-72 g/10.1021/ar010130s">CrossRef
    28. Tyler RC, Sreenath HK, Singh S, Aceti DJ, Bingman CA, Markley JL, Fox BG (2005) Auto-induction medium for the production of [U-15N]- and [U-13C, U-15N]-labeled proteins for NMR screening and structure determination. Protein Expr Purif 40:268-78 g/10.1016/j.pep.2004.12.024">CrossRef
    29. Sreenath HK, Bingman CA, Buchan BW, Seder KD, Burns BT, Geetha HV, Jeon WB, Vojtik FC, Aceti DJ, Frederick RO, Phillips GN Jr, Fox BG (2005) Protocols for production of selenomethionine-labeled proteins in 2-l polyethylene terephthalate bottles using auto-induction medium. Protein Expr Purif 40:256-67 g/10.1016/j.pep.2004.12.022">CrossRef
    30. Jeon WB, Aceti DJ, Bingman CA, Vojtik FC, Olson AC, Ellefson JM, McCombs JE, Sreenath HK, Blommel PG, Seder KD, Burns BT, Geetha HV, Harms AC, Sabat G, Sussman MR, Fox BG, Phillips GN Jr (2005) High-throughput purification and quality assurance of / Arabidopsis thaliana proteins for eukaryotic structural genomics. J Struct Funct Genomics 6:143-47 g/10.1007/s10969-005-1908-7">CrossRef
    31. Tyler RC, Aceti DJ, Bingman CA, Cornilescu CC, Fox BG, Frederick RO, Jeon WB, Lee MS, Newman CS, Peterson FC, Phillips GN Jr, Shahan MN, Singh S, Song J, Sreenath HK, Tyler EM, Ulrich EL, Vinarov DA, Vojtik FC, Volkman BF, Wrobel RL, Zhao Q, Markley JL (2005) Comparison of cell-based and cell-free protocols for producing target proteins from the / Arabidopsis thaliana genome for structural studies. Proteins 59:633-43 g/10.1002/prot.20436">CrossRef
    32. Blommel PG, Martin PA, Wrobel RL, Steffen E, Fox BG (2006) High efficiency single step production of expression plasmids from cDNA clones using the flexi vector cloning system. Protein Expr Purif 47:562-70 g/10.1016/j.pep.2005.11.007">CrossRef
    33. Blommel PG, Becker KJ, Duvnjak P, Fox BG (2007) Enhanced bacterial protein expression during auto-induction obtained by alteration of lac repressor dosage and medium composition. Biotechnol Prog 23:585-98 g/10.1021/bp070011x">CrossRef
    34. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, pp 15.44-5.48
    35. Klein RD, Wells RD (1982) Effects of neighboring DNA homopolymers on the biochemical and physical properties of the / Escherichia coli lactose promoter. I. Cloning and characterization studies. J Biol Chem 257:12954-2961
    36. Patterson GH, Knobel SM, Sharif WD, Kain SR, Piston DW (1997) Use of the green fluorescent protein and its mutants in quantitative fluorescence microscopy. Biophys J 73:2782-790
    37. Yang TT, Cheng L, Kain SR (1996) Optimized codon usage and chromophore mutations provide enhanced sensitivity with the green fluorescent protein. Nucleic Acids Res 24:4592-593 g/10.1093/nar/24.22.4592">CrossRef
    38. Crameri A, Whitehorn EA, Tate E, Stemmer WP (1996) Improved green fluorescent protein by molecular evolution using DNA shuffling. Nat Biotechnol 14:315-19 g/10.1038/nbt0396-315">CrossRef
    39. Prodromou C, Pearl LH (1992) Recursive PCR: a novel technique for total gene synthesis. Protein Eng 5:827-29 g/10.1093/protein/5.8.827">CrossRef
    40. Casimiro DR, Toy-Palmer A, Blake RC 2nd, Dyson HJ (1995) Gene synthesis, high-level expression, and mutagenesis of / Thiobacillus ferrooxidans rusticyanin: his 85 is a ligand to the blue copper center. Biochemistry 34:6640-648 g/10.1021/bi00020a009">CrossRef
    41. Casimiro DR, Wright PE, Dyson HJ (1997) PCR-based gene synthesis and protein NMR spectroscopy. Structure 5:1407-412 g/10.1016/S0969-2126(97)00291-8">CrossRef
    42. Sambrook J, Fritsch EF, Maniatis T (2001) Molecular cloning, a laboratory manual. Cold Spring Harbor, Cold Spring Harbor Laboratory Press, New York
    43. Wood WB (1966) Host specificity of DNA produced by / Escherichia coli: bacterial mutations affecting the restriction and modification of DNA. J Mol Biol 16:118-33 g/10.1016/S0022-2836(66)80267-X">CrossRef
    44. Arber W (1964) Host specificity of DNA produced by / Escherichia coli. 3. Effects on transduction mediated by lambda Dg. Virology 23:173-82 g/10.1016/0042-6822(64)90280-6">CrossRef
    45. Studier FW (2005) Protein production by auto-induction in high density shaking cultures. Protein Expr Purif 41:207-34 g/10.1016/j.pep.2005.01.016">CrossRef
    46. Blommel PG, Fox BG (2007) A combined approach to improving large-scale production of tobacco etch virus protease. Protein Expr Purif 55(1):53-8 g/10.1016/j.pep.2007.04.013">CrossRef
    47. The CCP4 suite: programs for protein crystallography (1994) Acta Crystallogr D Biol Crystallogr 50:760-63
    48. Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60:2126-132 g/10.1107/S0907444904019158">CrossRef
    49. Murshudov GN, Vagin AA, Dodson EJ (1997) Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr 53:240-55 g/10.1107/S0907444996012255">CrossRef
    50. Leahy DJ, Hendrickson WA, Aukhil I, Erickson HP (1992) Structure of a fibronectin type III domain from tenascin phased by MAD analysis of the selenomethionyl protein. Science 258:987-91 g/10.1126/science.1279805">CrossRef
    51. Blattner FR, Plunkett G 3rd, Bloch CA, Perna NT, Burland V, Riley M, J. Collado-Vides, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y (1997) The complete genome sequence of / Escherichia coli K-12. Science 277:1453-474 g/10.1126/science.277.5331.1453">CrossRef
    52. Welch RA, Burland V, Plunkett G 3rd, Redford P, Roesch P, Rasko D, Buckles EL, Liou SR, Boutin A, Hackett J, Stroud D, Mayhew GF, Rose DJ, Zhou S, Schwartz DC, Perna NT, Mobley HL, Donnenberg MS, Blattner FR (2002) Extensive mosaic structure revealed by the complete genome sequence of uropathogenic / Escherichia coli. Proc Natl Acad Sci USA 99:17020-7024 g/10.1073/pnas.252529799">CrossRef
    53. Thao S, Zhao Q, Kimball T, Steffen E, Blommel PG, Riters M, Newman CS, Fox BG, Wrobel RL (2004) Results from high-throughput DNA cloning of / Arabidopsis thaliana target genes using site-specific recombination. J Struct Funct Genomics 5:267-76 g/10.1007/s10969-004-7148-4">CrossRef
  • 作者单位:Ronnie O. Frederick (1)
    Lai Bergeman (1)
    Paul G. Blommel (1)
    Lucas J. Bailey (1)
    Jason G. McCoy (1)
    Jikui Song (1)
    Louise Meske (1)
    Craig A. Bingman (1)
    Megan Riters (1)
    Nicholas A. Dillon (1)
    John Kunert (1)
    Jung Whan Yoon (1)
    Ahyoung Lim (1)
    Michael Cassidy (1)
    Jason Bunge (1)
    David J. Aceti (1)
    John G. Primm (1)
    John L. Markley (1)
    George N. Phillips Jr (1)
    Brian G. Fox (1)

    1. The University of Wisconsin Center for Eukaryotic Structural Genomics and Department of Biochemistry, University of Wisconsin, Room 141B, 433 Babcock Drive, Madison, WI, 53706, USA
文摘
A simple approach that allows cost-effective automated purification of recombinant proteins in levels sufficient for functional characterization or structural studies is described. Studies with four human stem cell proteins, an engineered version of green fluorescent protein, and other proteins are included. The method combines an expression vector (pVP62K) that provides in?vivo cleavage of an initial fusion protein, a factorial designed auto-induction medium that improves the performance of small-scale production, and rapid, automated metal affinity purification of His8-tagged proteins. For initial small-scale production screening, single colony transformants were grown overnight in 0.4?ml of auto-induction medium, produced proteins were purified using the Promega Maxwell 16, and purification results were analyzed by Caliper LC90 capillary electrophoresis. The yield of purified [U-15N]-His8-Tcl-1 was 7.5?μg/ml of culture medium, of purified [U-15N]-His8-GFP was 68?μg/ml, and of purified selenomethione-labeled AIA–GFP (His8 removed by treatment with TEV protease) was 172?μg/ml. The yield information obtained from a successful automated purification from 0.4?ml was used to inform the decision to scale-up for a second meso-scale (10-0?ml) cell growth and automated purification. 1H-sup class="a-plus-plus">15N NMR HSQC spectra of His8-Tcl-1 and of His8-GFP prepared from 50?ml cultures showed excellent chemical shift dispersion, consistent with well folded states in solution suitable for structure determination. Moreover, AIA–GFP obtained by proteolytic removal of the His8 tag was subjected to crystallization screening, and yielded crystals under several conditions. Single crystals were subsequently produced and optimized by the hanging drop method. The structure was solved by molecular replacement at a resolution of 1.7??. This approach provides an efficient way to carry out several key target screening steps that are essential for successful operation of proteomics pipelines with eukaryotic proteins: examination of total expression, determination of proteolysis of fusion tags, quantification of the yield of purified protein, and suitability for structure determination.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700