Impact of water composition on association of Ag and CeO2 nanoparticles with aquatic macrophyte Elodea canadensis
详细信息    查看全文
  • 作者:Frederik Van Koetsem ; Yi Xiao ; Zhuanxi Luo…
  • 关键词:Silver ; Cerium dioxide ; Nanoparticles ; Aquatic plant ; Surface water ; Plant uptake
  • 刊名:Environmental Science and Pollution Research
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:23
  • 期:6
  • 页码:5277-5287
  • 全文大小:622 KB
  • 参考文献:Blaser SA, Scheringer M, MacLeod M, Hungerbuhler K (2008) Estimation of cumulative aquatic exposure and risk due to silver: contribution of nano-functionalized plastics and textiles. Sci Total Environ 390:396–409CrossRef
    Brown BT, Rattigan BM (1979) Toxicity of soluble copper and other metal ions to Elodea canadensis. Environ Pollut 20:303–314CrossRef
    Buettner KM, Rinciog CI, Mylon SE (2010) Aggregation kinetics of cerium oxide nanoparticles in monovalent and divalent electrolytes. Colloids Surf A Physicochem Eng Asp 366:74–79CrossRef
    Chu WY, Cai SJ, Fu YY, Li FF, Xu T, Qiu H, Xu QS (2014) The toxicity of cerium nitrate to Elodea canadensis: subcellular distribution, chemical forms and physiological effects. Acta Physiol Plant 36:2491–2499CrossRef
    Clasceri LS, Greenberg AE, Eaton AD (1999) SM 10200 H. Chlorophyll. In: Standard methods for the examination of water and wastewater, 20th edition. 10200 Plankton. American Public Health Association, Washington, DC 1325
    Cornelis G, Brooke R, McLaughlin MJ, Kirby JK, Beak D, Chittleborough D (2011) Solubility and batch retention of CeO2 nanoparticles in soils. Environ Sci Technol 45:2777–2782CrossRef
    Darlington TK, Neigh AM, Spencer MT, Nguyen OT, Oldenburg SJ (2009) Nanoparticle characteristics affecting environmental fate and transport through soil. Environ Toxicol Chem 28:1191–1199CrossRef
    Dietz KJ, Herth S (2011) Plant nanotoxicology. Trends Plant Sci 16:582–589CrossRef
    El Badawy AM, Luxton TP, Silva GR, Scheckel KG, Suidan MT, Tolaymat TM (2010) Impact of environmental conditions (pH, ionic strength, and electrolyte type) on the surface charge and aggregation of silver nanoparticles suspensions. Environ Sci Technol 44:1260–1266CrossRef
    Fabrega J, Luoma SN, Tyler CR, Galloway TS, Lead JR (2011) Silver nanoparticles: behaviour and effects in the aquatic environment. Environ Int 37:517–531CrossRef
    Fritioff Å, Greger M (2007) Fate of cadmium in Elodea canadensis. Chemosphere 67:265–375CrossRef
    Gaiser B, Fernandes T, Jepson M, Lead JR, Tyler CR, Stone V (2009) Assessing exposure, uptake and toxicity of silver and cerium dioxide nanoparticles from contaminated environments. Environ Health 8((Suppl 1):S2):4
    Glenn JB, Klaine SJ (2013) Abiotic and biotic factors that influence the bioavailability of gold nanoparticles to aquatic macrophytes. Environ Sci Technol 47:10223–10230
    Glenn JB, White SA, Klaine SJ (2012) Interactions of gold nanoparticles with freshwater aquatic macrophytes are size and species dependent. Environ Toxicol Chem 31:194–201CrossRef
    Gubbins EJ, Batty LC, Lead JR (2011) Phytotoxicity of silver nanoparticles to Lemna minor L. Environ Pollut 159:1551–1559CrossRef
    Handy RD, von der Kammer F, Lead JR, Hassellöv M, Owen R, Crane M (2008) The ecotoxicology and chemistry of manufactured nanoparticles. Ecotoxicology 17:287–314CrossRef
    Hotze EM, Phenrat T, Lowry GV (2010) Nanoparticle aggregation: challenges to understanding transport and reactivity in the environment. J Environ Qual 39:1909–1924CrossRef
    Jacob DL, Borchardt JD, Navaratnam L, Otte ML, Bezbaruah AN (2013) Uptake and translocation of Ti from nanoparticles in crops and wetland plants. Int J Phytoremediation 15:142–153CrossRef
    Jiang HS, Li M, Chang FY, Li W, Yin LY (2012) Physiological analysis of silver nanoparticles and AgNO3 toxicity to Spirodela polyrhiza. Environ Toxicol Chem 31:1880–1886CrossRef
    Jiang HS, Qiu XN, Li GB, Li W, Yin LY (2014) Silver nanoparticles induced accumulation of reactive oxygen species and alteration of antioxidant systems in the aquatic plant Spirodela polyrhiza. Environ Toxicol Chem 33:1398–1405CrossRef
    Johnson RL, Johnson GOB, Nurmi JT, Tratnyek PG (2009) Natural organic matter enhanced mobility of nano zerovalent iron. Environ Sci Technol 43:5455–5460CrossRef
    Johnson ME, Ostroumov SA, Tyson JF, Xing B (2011) Study of the interactions between Elodea canadensis and CuO nanoparticles. Russ J Gen Chem 81:2688–2693CrossRef
    Juhel G, Batisse E, Hugues Q, Daly D, van Pelt FNAM, O’Halloran J, Jansen MAK (2011) Alumina nanoparticles enhance growth of Lemna minor. Aquat Toxicol 105:328–336CrossRef
    Kähkönen MA, Pantsar-Kallio M, Manninen PKG (1997) Analysing heavy metal concentrations in the different parts of Elodea canadensis and surface sediment with PCA in two boreal lakes in southern Finland. Chemosphere 35:2645–2656CrossRef
    Karakoti AS, Munusamy P, Hostetler K, Kodali V, Kuchibhatla S, Orr G, Pounds JG, Teeguarden JG, Thrall BD, Baer DR (2012) Preparation and characterization challenges to understanding environmental and biological impacts of ceria nanoparticles. Surf Interface Anal 44:882–889CrossRef
    Keller AA, Wang G, Zhou D, Lenihan HS, Cherr G, Cardinale BJ, Miller R, Ji Z (2010) Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices. Environ Sci Technol 44:1962–1967CrossRef
    Kim E, Kim SH, Kim HC, Lee SG, Lee SJ, Jeong SW (2011) Growth inhibition of aquatic plant caused by silver and titanium oxide nanoparticles. J Toxicol Environ Health Sci 3:1–6CrossRef
    Klaine SJ, Alvarez PJJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, Mahendra S, McLaughlin MJ, Lead JR (2008) Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem 27:1825–1851CrossRef
    Klaine SJ, Koelmans AA, Horne N, Carley S, Handy RD, Kaputska L, Nowack B, von der Kammer F (2012) Paradigms to assess the environmental impact of manufactured nanomaterials. Environ Toxicol Chem 31:3–14CrossRef
    Larras F, Regier N, Planchon S, Poté J, Renaut J, Cosio C (2013) Physiological and proteomic changes suggest an important role of cell walls in the high tolerance to metals of Elodea nuttallii. J Hazard Mater 263:575–583CrossRef
    Levard C, Hotze EM, Lowry GV, Brown GE Jr (2012) Environmental transformations of silver nanoparticles: impact on stability and toxicity. Environ Sci Technol 46:6900–6914CrossRef
    Lin D, Xing B (2008) Root uptake and toxicity of ZnO nanoparticles. Environ Sci Technol 42:5580–5585CrossRef
    Ma X, Geiser-Lee J, Deng Y, Kolmakov A (2010) Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation. Sci Total Environ 408:3053–3061CrossRef
    Ma JW, Lu XY, Huang Y (2011) Genomic analysis of cytotoxicity response to nanosilver in human dermal fibroblasts. J Biomed Nanotechnol 7:263–275CrossRef
    Miralles P, Church TL, Harris AT (2012) Toxicity, uptake, and translocation of engineered nanomaterials in vascular plants. Environ Sci Technol 46:9224–9239CrossRef
    Monica RC, Cremonini R (2009) Nanoparticles and higher plants. Caryologia 62:161–165CrossRef
    Navarro E, Baun A, Behra R, Hartmann NB, Filser J, Miao AJ, Quigg A, Santschi PH, Sigg L (2008) Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 17:372–386CrossRef
    Nowack B, Bucheli TD (2007) Occurrence, behavior and effects of nanoparticles in the environment. Environ Pollut 150:5–22CrossRef
    Nyquist J, Greger M (2007) Uptake of Zn, Cu, and Cd in metal loaded Elodea canadensis. Environ Exp Bot 60:219–226CrossRef
    Oukarroum A, Bras S, Perreault F, Popovic R (2012) Inhibitory effects of silver nanoparticles in two green algae, Chlorella vulgaris and Dunaliella tertiolecta. Ecotoxicol Environ Saf 78:80–85CrossRef
    Oukarroum A, Barhoumi L, Pirastru L, Dewez D (2013) Silver nanoparticle toxicity effect on growth and cellular viability of the aquatic plant Lemna gibba. Environ Toxicol Chem 32:902–907CrossRef
    Perida AK, Das AB (2004) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60:324–349CrossRef
    Quik JTK, Lynch I, Van Hoecke K, Miermans CJH, De Schamphelaere KAC, Janssen CR, Dawson KA, Cohen Stuart MA, Van De Meent D (2010) Effect of natural organic matter on cerium dioxide nanoparticles settling in model fresh water. Chemosphere 81:711–715CrossRef
    Quik JTK, Stuart MC, Wouterse M, Peijnenburg W, Hendriks AJ, van de Meent D (2012) Natural colloids are the dominant factor in the sedimentation of nanoparticles. Environ Toxicol Chem 31:1019–1022CrossRef
    Rico CM, Majumdar S, Duarte-Gardea M, Peralta-Videa JR, Gardea-Torresdey JL (2011) Interaction of nanoparticles with edible plants and their possible implications in the food chain. J Agric Food Chem 59:3485–3498CrossRef
    Rogers NJ, Franklin NM, Apte SC, Batley GE, Angel BM, Lead JR, Baalousha M (2010) Physico-chemical behaviour and algal toxicity of nanoparticulate CeO2 in freshwater. Environ Chem 7:50–60CrossRef
    Sabo-Attwood T, Unrine JM, Stone JW, Murphy CJ, Ghoshroy S, Blom D, Bertsch PM, Newman LA (2011) Uptake, distribution and toxicity of gold nanoparticles in tobacco (Nicotiana xanthi) seedlings. Nanotoxicology 6:353–360CrossRef
    Scown TM, van Aerle R, Tyler CR (2010) Review: Do engineered nanoparticles pose a significant threat to the aquatic environment? Crit Rev Toxicol 40:653–670CrossRef
    Shah V, Shah S, Shah H, Rispoli FJ, McDonnell KT, Workeneh S, Karakoti A, Kumar A, Seal S (2012) Antibacterial activity of polymer coated cerium oxide nanoparticles. PLoS ONE 7(e47827):12
    Thiébaut G, Gross Y, Gierlinski P, Boiché A (2010) Accumulation of metals in Elodea canadensis and Elodea nuttallii: implications for plant-macroinvertebrate interactions. Sci Total Environ 408:5499–5505CrossRef
    Thill A, Zeyons O, Spalla O, Chauvat F, Rose J, Auffan M, Flank AM (2006) Cytotoxicity of CeO2 nanoparticles for Escherichia coli. Physico-chemical insight of the cytotoxicity mechanism. Environ Sci Technol 40:6151–6156CrossRef
    Thio BJR, Zhou D, Keller AA (2011) Influence of natural organic matter on the aggregation and deposition of titanium dioxide nanoparticles. J Hazard Mater 189:556–563CrossRef
    Thwala M, Musee N, Sikhwivhilu L, Wepener V (2013) The oxidative toxicity of Ag and ZnO nanoparticles towards the aquatic plant Spirodela punctuta and the role of testing media parameters. Environ Sci Processes Impacts 15:1830–1843CrossRef
    Van Hoecke K, Quik JTK, Mankiewicz-Boczek J, De Schamphelaere KAC, Elsaesser A, Van der Meeren P, Barnes C, McKerr G, Howard CV, van de Meent D, Rydzynśki K, Dawson KA, Salvati A, Lesniak A, Lynch I, Silversmit G, De Samber B, Vincze L, Janssen CR (2009) Fate and effects of CeO2 nanoparticles in aquatic ecotoxicity tests. Environ Sci Technol 43:4537–4546CrossRef
    Van Hoecke K, De Schamphelaere KAC, Van der Meeren P, Smagghe G, Janssen CR (2011) Aggregation and ecotoxicity of CeO2 nanoparticles in synthetic and natural waters with variable pH, organic matter concentration and ionic strength. Environ Pollut 159:970–976CrossRef
    Van Koetsem F, Geremew TT, Wallaert E, Verbeken K, Van der Meeren P, Du Laing G (2015a) Fate of engineered nanomaterials in surface water: factors affecting interactions of Ag and CeO2 nanoparticles with (re)suspended sediments. Ecol Eng 80:140–150CrossRef
    Van Koetsem F, Verstraete S, Van der Meeren P, Du Laing G (2015b) Stability of engineered nanomaterials in complex aqueous matrices: settling behaviour of CeO2 nanoparticles in natural surface waters. Environ Res 142:207–214CrossRef
    Van Ranst E, Verloo M, Demeye A, Pouwels JM (1999) Manual for the soil chemistry and fertility laboratory: analytical methods for soils and plants, equipment, and management of consumables. Ghent University, Ghent, p 243
    Wijnhoven SWP, Peijnenburg W, Herberts CA, Hagens WI, Oomen AG, Heugens EHW, Roszek B, Bisschops J, Gosens I, Van De Meent D, Dekkers S, De Jong WH, van Zijverden M, Sips AJAM, Geertsma RE (2009) Nano-silver—a review of available data and knowledge gaps in human and environmental risk assessment. Nanotoxicology 3:109–138CrossRef
    Zhang H, He X, Zhang Z, Zhang P, Li Y, Ma Y, Kuang Y, Zhao Y, Chai Z (2011) Nano-CeO2 exhibits adverse effects at environmental relevant concentrations. Environ Sci Technol 45:3725–3730CrossRef
    Zhao CM, Wang WX (2011) Comparison of acute and chronic toxicity of silver nanoparticles and silver nitrate to Daphnia magna. Environ Toxicol Chem 30:885–892CrossRef
  • 作者单位:Frederik Van Koetsem (1)
    Yi Xiao (1) (2)
    Zhuanxi Luo (2)
    Gijs Du Laing (1)

    1. Laboratory of Analytical Chemistry and Applied Ecochemistry, Department of Applied Analytical and Physical Chemistry, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent, Belgium
    2. Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, China
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Environment
    Environment
    Atmospheric Protection, Air Quality Control and Air Pollution
    Waste Water Technology, Water Pollution Control, Water Management and Aquatic Pollution
    Industrial Pollution Prevention
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1614-7499
文摘
In this study, the potential association of (citrate-stabilized) Ag (14.1 ± 1.0 nm) and CeO2 (6.7 ± 1.2 nm) engineered nanoparticles (ENPs), or their ionic counterparts, with the submerged aquatic plant Elodea canadensis, was examined and, in particular, parameters affecting the distribution of the nanoparticles (or metal ions) between plant biomass and the water phase were assessed using five distinct aqueous matrices (i.e. tap water, 10 % Hoagland’s solution and three natural surface water samples). Individual plants were exposed to varying concentrations of Ag and CeO2 ENPs or Ag+ and Ce3+ ions during 72-h-lasting batch experiments. A dose-dependent increase of silver or cerium in plant biomass was observed for both the nanoparticles and the ions, whereby exposure to the latter systematically resulted in significantly higher biomass concentrations. Furthermore, the apparent plant uptake of CeO2 ENPs appeared to be higher than that for Ag ENPs when comparing similar exposure concentrations. These findings suggest that association with E. canadensis might be affected by particle characteristics such as size, composition, surface charge or surface coating. Moreover, the stability of the ENPs or ions in suspension/solution may be another important aspect affecting plant exposure and uptake. The association of the nanoparticles or ions with E. canadensis was affected by the physicochemical characteristics of the water sample. The silver biomass concentration was found to correlate significantly with the electrical conductivity (EC), dry residue (DR) and Cl−, K, Na and Mg content in the case of Ag ENPs or with the EC, inorganic carbon (IC) and Cl−, NO3 −, Na and Mg content in the case of Ag+ ions, whereas significant relationships between the cerium biomass concentration and the EC, DR, IC and Ca content or the pH, EC, DR, IC and Cl−, Ca and Mg content were obtained for CeO2 ENPs or Ce3+ ions, respectively. Results also indicated that the Ag ENPs and Ag+ ions might potentially be toxic towards E. canadensis whereas no evidence of phytotoxicity was noted in the case of CeO2 ENPs or Ce3+ ions.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700