Downlink Precoding for Multiple Users in FDD Massive MIMO Without CSI Feedback
详细信息    查看全文
  • 作者:Ming-Fu Tang ; Borching Su
  • 关键词:Massive MIMO ; Frequency ; division duplex ; Robust beamforming ; Downlink precoding ; Parks ; McClellan algorithm
  • 刊名:The Journal of VLSI Signal Processing
  • 出版年:2016
  • 出版时间:May 2016
  • 年:2016
  • 卷:83
  • 期:2
  • 页码:151-163
  • 全文大小:1,509 KB
  • 参考文献:1.Andrews, J., Buzzi, S., Choi, W., Hanly, S., Lozano, A., Soong, A., & Zhang, J. (2014). What Will 5G Be? IEEE Journal on Selected Areas in Communications, 32(6), 1065–1082.CrossRef
    2.Larsson, E., Edfors, O., Tufvesson, F., & Marzetta, T. (2014). Massive MIMO for next generation wireless systems. IEEE Communications Magazine, 52(2), 186–195.CrossRef
    3.Marzetta, T. (2010). Noncooperative cellular wireless with unlimited numbers of base station antennas. IEEE Transactions on Wireless Communications, 9(11), 3590–3600.CrossRef
    4.Rusek, F., Persson, D., Lau, B. K., Larsson, E., Marzetta, T., Edfors, O., & Tufvesson, F. (2013). Scaling up MIMO: opportunities and challenges with very large arrays. IEEE Signal Processing Magazine, 30(1), 40–60.CrossRef
    5.Lu, L., Li, G., Swindlehurst, A., Ashikhmin, A., & Zhang, R. (2014). An overview of massive MIMO: benefits and challenges. IEEE Journal of Selected Topics in Signal Processing, 8(5), 742–758.CrossRef
    6.Rao, X., & Lau, V. (2014). Distributed compressive CSIT estimation and feedback for FDD multi-user massive MIMO systems. IEEE Transactions on Signal Processing, 62(12), 3261–3271.MathSciNet CrossRef
    7.Choi, J., Love, D., & Bidigare, P. (2014). Downlink training techniques for FDD massive MIMO systems: open-loop and closed-loop training with memory. IEEE Journal of Selected Topics in Signal Processing, 8(5), 802–814.CrossRef
    8.Chen, J., & Lau, V. (2014). Two-tier lFDD multi-cell massive MIMO time-varying interference networks. IEEE Journal on Selected Areas in Communications, 32(6), 1230–1238.CrossRef
    9.Adhikary, A., Nam, J., Ahn, J.-Y., & Caire, G. (2013). Joint spatial division and multiplexing - the large-scale array regime. IEEE Transactions on Information Theory, 59(10), 6441–6463.MathSciNet CrossRef
    10.Chan, P., Lo, E., Wang, R., Au, E., Lau, V., Cheng, R., Mow, W. H., Murch, R., & Letaief, K. (2006). The evolution path of 4G networks: FDD or TDD? IEEE Communications Magazine, 44(12), 42–50.CrossRef
    11.Li, Y., Rahman, M. S., & Nam, Y.-H. (2014). Full-dimension MIMO cellular systems realizing potential of massive-MIMO. IEEE Comsoc MMTC E-Letter, 9(6), 6–10.
    12.Ertel, R., Cardieri, P., Sowerby, K., Rappaport, T., & Reed, J. (Feb 1998). Overview of spatial channel models for antenna array communication systems. IEEE Personal Communications, 5(1), 10–22.
    13.Brady, J., Behdad, N., & Sayeed, A. (2013). Beamspace MIMO for millimeter-wave communications: system architecture, modeling, analysis, and measurements. IEEE Transactions on Antennas and Propagation, 61 (7), 3814–3827.CrossRef
    14.Carlson, B. (1988). Covariance matrix estimation errors and diagonal loading in adaptive arrays. IEEE Transactions on Aerospace and Electronic Systems, 24(4), 397–401.CrossRef
    15.Vincent, F., & Besson, O. (Dec 2004). Steering vector errors and diagonal loading. IEE Proc Radar Sonar Navzg, 151(6), 337–343.
    16.Karam, L., & McClellan, J. (1995). Complex Chebyshev approximation for FIR filter design. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 42(3), 207–216.CrossRef MATH
    17.Parks, T., & McClellan, J. (1972). Chebyshev approximation for nonrecursive digital filters with linear phase. IEEE Transactions on Circuit Theory, 19(2), 189–194.CrossRef
    18.Spencer, Q., Swindlehurst, A., & Haardt, M. (2004). Zero-forcing methods for downlink spatial multiplexing in multiuser MIMO channels. IEEE Transactions on Signal Processing, 52(2), 461–471.MathSciNet CrossRef
    19.3GPP (2014). Spatial channel model for Multiple Input Multiple Output (MIMO) simulations (V 12.0.0 Release 12), TR 25.996.
    20.3GPP (2015). Study on 3D channel model for LTE (V 12.0.0 Release 12), TR 36.873.
  • 作者单位:Ming-Fu Tang (1)
    Borching Su (1)

    1. Graduate Institute of Communication Engineering, National Taiwan University, Taipei, 10617, Taiwan
  • 刊物类别:Engineering
  • 刊物主题:Electrical Engineering
    Circuits and Systems
    Computer Imaging, Vision, Pattern Recognition and Graphics
    Computer Systems Organization and Communication Networks
    Signal,Image and Speech Processing
    Mathematics of Computing
  • 出版者:Springer New York
  • ISSN:1939-8115
文摘
Massive MIMO can provide downlink access to multiple user equipments (UEs) through appropriate precoding or beamforming. To obtain precoding matrices for users, channel state information at the transmitter (CSI-T) is usually mandatory, requiring downlink training and CSI feedback at least in the frequency division duplex mode. However, such training is typically considered impractical because of the considerable amount of pilot signals and feedback overhead. In this paper, we propose downlink precoding methods that do not require UEs to generate feedback CSI for massive MIMO systems with uniform linear arrays. By recognizing the similarity between uplink and downlink channels, the base station is assumed to have partial knowledge on downlink channels (more specifically, the angles of departure of the major propagation paths of each user). Using such partial channel knowledge, we propose two precoding design methods based on robust beamforming and the design of a spatial-domain optimum finite impulse response filter. The simulation results demonstrate that the proposed method achieves a sum rate near that of a feedback-based precoding method with ideal CSI-T. In contrast to an alternative method based on beamspace division, the numerical results also display the performance advantage of the proposed method.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700