Residual intensity modulation in resonator fiber optic gyros with sinusoidal wave phase modulation
详细信息    查看全文
  • 作者:Di-qing Ying (1)
    Qiang Li (1)
    Hui-lian Ma (1)
    Zhong-he Jin (1)
  • 关键词:Resonator fiber optic gyro ; Phase modulation ; Residual intensity modulation ; TN253
  • 刊名:Journal of Zhejiang University - Science C
  • 出版年:2014
  • 出版时间:June 2014
  • 年:2014
  • 卷:15
  • 期:6
  • 页码:482-488
  • 全文大小:561 KB
  • 参考文献:1. Carroll, R., Coccoli, C.D., Cardarelli, D., / et al., 1987. The passive resonator fiber optic gyro and comparison to the interferometer fiber gyro. Fiber Optic Gyros: 10th Anniversary Conf. Int. Society for Optics and Photonics, p.169-77. CrossRef
    2. Chow, W.W., Gea-Banaciloche, J., Pedrotti, L.M., / et al., 1985. The ring laser gyro. / Rev. Mod. Phys., 57(1):61-03. [doi:10.1103/RevModPhys.57.61] CrossRef
    3. Hotate, K., Harumoto, M., 1997. Resonator fiber optic gyro using digital serrodyne modulation. / J. Lightw. Technol., 15(3):466-73. [doi:10.1109/50.557562] CrossRef
    4. Hotate, K., Hayashi, G., 1999. Resonator fiber optic gyro using digital serrodyne modulation-method to reduce the noise induced by the backscattering and closed-loop operation using digital signal processing. / SPIE, 3746:104-07.
    5. Hu, Z., 2008. Effects of residual intensity modulation of Y-waveguide modulator on interferometric fiber optic gyroscope and elimination method. / Chin. J. Lasers, 35(12):1924-929 (in Chinese). [doi:10.3788/CJL20083512.1924] CrossRef
    6. Iwatsuki, K., Hotate, K., Higashiguchi, M., 1984. Effect of Rayleigh backscattering in an optical passive ring-resonator gyro. / Appl. Opt., 23(21):3916-924. [doi:10.1364/AO.23.003916] CrossRef
    7. Iwatsuki, K., Hotate, K., Higashiguchi, M., 1986. Kerr effect in an optical passive ring-resonator gyro. / J. Lightw. Technol., 4(6):645-51. [doi:10.109/JLT.1986.1074770] CrossRef
    8. Jaatinen, E., Hopper, D.J., Back, J., 2009. Residual amplitude modulation mechanisms in modulation transfer spectroscopy that use electro-optic modulators. / Meas. Sci. Technol., 20(2):1-. [doi:10.1088/0957-0233/20/2/025302] CrossRef
    9. Jin, Z., Zhang, G., Mao, H., / et al., 2012. Resonator micro optic gyro with double phase modulation technique using an FPGA-based digital processor. / Opt. Commun., 285(5): 645-49. [doi:10.1016/j.opt-com.2011.11.017] CrossRef
    10. Lefevre, H., 1993. The Fiber-Optic Gyroscope. Artech House, London, United Kingdom, p.5-6.
    11. Li, X., Ge, C., Zhang, C., 2009. The influence of residuary intensity modulation of Y waveguide on the performance of IFOG. / Opto-Electron. Eng., 36(11):43-7 (in Chinese).
    12. Ma, H., Jin, Z., Ding, C., / et al., 2003. Influence of spectral linewidth of laser on resonance characteristics in fiber ring resonator. / Chin. J. Lasers, 30(8):731-34 (in Chinese).
    13. Ma, H., Jin, Z., Ding, C., / et al., 2004. Research on signal detection method of resonator fiber optical gyro. / Chin. J. Lasers, 31(8):1001-005 (in Chinese).
    14. Ma, H., Lu, X., Yao, L., / et al., 2012. Full investigation of the resonant frequency servo loop for resonator fiber-optic gyro. / Appl. Opt., 51(21):5178-185. [doi:10.1364/AO.51. 005178] CrossRef
    15. Malvern, A., 1992. Progress toward fiber optic gyro production. Fiber Optic Gyros: 15th Anniversary Conf. Int. Society for Optics and Photonics, p.48-4. [doi:10.1117/12.135035] CrossRef
    16. Meyer, R.E., Ezekiel, S., Stowe, D.W., / et al., 1983. Passive fiber-optic ring resonator for rotation sensing. / Opt. Lett., 8(12):644-46. [doi:10.1364/OL.8.000644] CrossRef
    17. Sathian, J., Jaatinen, E., 2012. Intensity dependent residual amplitude modulation in electro-optic phase modulators. / Appl. Opt., 51(16):3684-691. [doi:10.1364/AO.51.00 3684] CrossRef
    18. Savatinova, I., Tonchev, S., Todorov, R., / et al., 1996. Electro-optic effect in proton exchanged LiNbO3 and LiTaO3 waveguides. / J. Lightw. Technol., 14(3):403-09. [doi:10. 1109/50.485600] CrossRef
    19. Shupe, D.M., 1981. Fiber resonator gyroscope: sensitivity and thermal nonreciprocity. / Appl. Opt., 20(2):286-89. [doi: 10.1364/AO.20.000286] CrossRef
    20. Wang, D., Sheng, F., 2007. Residuary intensity modulation of the phase modulator in IFOG and its measurement. / Opto-Electron. Eng., 34(7):26-9 (in Chinese).
    21. Wang, W., Zhang, G., 1995. The effect of residual intensity modulation of Ti: LiNbO3 phase modulator in closed-loop FOG. / J. Chin. Inert. Technol., 3(1):55-8 (in Chinese).
    22. Ying, D., Ma, H., Jin, Z., 2008a. Resonator fiber optic gyro using the triangle wave phase modulation technique. / Opt. Commun., 281(4):580-86. [doi:10.1016/j.optcom.2007. 10.012] CrossRef
    23. Ying, D., Ma, H., Jin, Z., 2008b. Dynamic characteristics of R-FOG based on the triangle wave phase modulation technique. / Opt. Commun., 281(21):5340-343. [doi:10.1016/j.optcom.200807.042] CrossRef
    24. Ying, D., Demokan, M.S., Zhang, X., / et al., 2010. Analysis of Kerr effect in resonator fiber optic gyros with triangular wave phase modulation. / Appl. Opt., 49(3):529-35. [doi: 10.1364/AO.49.000529] CrossRef
    25. Zhang, G., Wang, W., 1996. The effect of polarization crosstalk of Ti: LiNbO3 phase modulator in closed-loop fiber-optic gyro. / Missil. Space Veh., 221(3):20-5 (in Chinese).
    26. Zhang, X., Ma, H., Ding, C., / et al., 2005. Analysis on phase modulation spectroscopy of resonator fiber optic gyro. / Chin. J. Lasers, 32(11):1529-533 (in Chinese).
    27. Zhang, X., Ma, H., Zhou, K., / et al., 2006a. Experiments in PM-spectroscopy resonator fiber optic gyro. / Chin. J. Sens. Actuat., 19(3):800-03 (in Chinese).
    28. Zhang, X., Ma, H., Ding, C., / et al., 2006b. Optical Kerr effect in phase modulation spectroscopy resonator fiber optic gyro. / Chin. J. Lasers, 33(6):814-18 (in Chinese).
  • 作者单位:Di-qing Ying (1)
    Qiang Li (1)
    Hui-lian Ma (1)
    Zhong-he Jin (1)

    1. Micro-Satellite Research Center, Zhejiang University, Hangzhou, 310027, China
  • ISSN:1869-196X
文摘
We present how residual intensity modulation (RIM) affects the performance of a resonator fiber optic gyro (R-FOG) through a sinusoidal wave phase modulation technique. The expression for the R-FOG system’s demodulation curve under RIM is obtained. Through numerical simulation with different RIM coefficients and modulation frequencies, we find that a zero deviation is induced by the RIM effect on the demodulation curve, and this zero deviation varies with the RIM coefficient and modulation frequency. The expression for the system error due to this zero deviation is derived. Simulation results show that the RIM-induced error varies with the RIM coefficient and modulation frequency. There also exists optimum values for the RIM coefficient and modulation frequency to totally eliminate the RIM-induced error, and the error increases as the RIM coefficient or modulation frequency deviates from its optimum value; however, in practical situations, these two parameters would not be exactly fixed but fluctuate from their respective optimum values, and a large system error is induced even if there exists a very small deviation of these two critical parameters from their optimum values. Simulation results indicate that the RIM-induced error should be considered when designing and evaluating an R-FOG system.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700