The role of snowmelt runoff on the ocean environment and scallop production in Funka Bay, Japan
详细信息    查看全文
  • 作者:Satoshi Nakada ; Katsuhisa Baba ; Masatoshi Sato…
  • 关键词:Snowmelt runoff ; Scallop aquaculture ; Land ; sea linkage ; OGCM ; Nutrient flux ; Submarine groundwater discharge
  • 刊名:Progress in Earth and Planetary Science
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:1
  • 期:1
  • 全文大小:3145KB
  • 参考文献:Anderson DM, Alpermann TJ, Cembella AD, Collos Y, Masseret E, Montresor M (2012) The globally distributed genus Alexandrium: multifaceted roles in marine ecosystems and impacts on human health. Harmful Algae 14:10鈥?5CrossRef
    Baba K, Sugawara R, Nitta H, Endou K, Miyazono A (2009) Relationship between spat density, food availability, and growth of spawners in cultured Mizuhopecten yessoensis in Funka Bay: concurrence with El Nino southern oscillation. Can J Fish Aquat Sci 66:6鈥?7, doi:0.1139/F08-183CrossRef
    Bondad-Reantaso MG, Subasinghe RP, Josupeit H, Cai J, Zhou X (2012) The role of crustacean fisheries and aquaculture in global food security: past, present and future. J Invert Path 110(2):158鈥?65, doi:org/10.1016/j.jip.2012.03.010CrossRef
    Chapman DC, Lentz SJ (1994) Trapping of a coastal density front by the bottom boundary layer. J Phys Oceanogr 24:1464鈥?479, doi: http://鈥媎x.鈥媎oi.鈥媜rg/鈥?0.鈥?175/鈥?520-0485(1994)024<1464:TOACDF>2.0.CO;2CrossRef
    Dai A, Trenberth KE (2002) Estimates of freshwater discharge from continents: latitudinal and seasonal variations. J Hydro 3:660鈥?7, doi:10.1175/1525-7541(2002)003<0660:EOFDFC>2.0.CO;2CrossRef
    Darecki M, Stramski D (2004) An evaluation of MODIS and SeaWiFS bio-optical algorithms in the Baltic Sea. Remote Sens Environ 89(3):326鈥?50, doi:10.1016/j.rse.2003.10.012CrossRef
    FAO (2011) FAO yearbook: fishery and aquaculture statistics 2009. Food and Agriculture Organization of the United Nations, Rome, Italy, p 223
    Garvine RW (2001) The impact of model configuration in studies of buoyant coastal discharge. J Mar Res 59:193鈥?25, doi:10.1357/002224001762882637CrossRef
    Gent PR, McWilliams JC (1990) Isopycnal mixing in the ocean circulation model. J Phys Oceanogr 20:150鈥?55, doi:10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2CrossRef
    Griffies SM (1998) The Gent-McWilliams skew flux. J Phys Oceanogr 28:831鈥?41, doi:10.1175/1520-0485(1998)028<0831:TGMSF>2.0.CO;2CrossRef
    Hanawa K, Mitsudera H (1986) Variations of water system distribution in the Sanriku coastal area. J Oceanogr Soc Japan 42:435鈥?46CrossRef
    Hasegawa N, Isoda Y (1997) Fresh water budget of Funka Bay. Umi to Sora 73:113鈥?21 (in Japanese with English abstract)
    Ileva NY, Shibata H, Satoh F, Sasa K, Ueda H (2009) Relationship between the riverine nitrate-nitrogen concentration and the land use in the Teshio River watershed, North Japan. Sustain Sci 4:189鈥?98, doi:10.1007/s11625-009-0081-5CrossRef
    Ishikawa Y, Awaji T, Toyoda T, In T, Nishina K, Nakayama T, Shima S, Masuda S (2009) High-resolution synthetic monitoring by a 4-dimensional variational data assimilation system in the northwestern North Pacific. J Mar Syst 78:237鈥?48, doi:10.1016/j.jmarsys.2009.02.016CrossRef
    Isoda Y, Takeyama Y, Azumaya T (2000) Ocean structural change around the diatom bloom in Funka Bay. Bull Coast Oceanogr 38:3鈥?4 (in Japanese with English abstract)
    Iwanami H, Wada T, Sakamoto K, Kudo I, Chikita KA (2013) Mechanism of nutrients supply from the Tokachi River catchment considering characteristics of discharge and land use. J Jpn Assoc Hydro Sci 43(1):3鈥?4
    Iwasaki S (2013) Fishers-based watershed management in Lake Saroma, Japan. Ocean & Coastal Manag 81:58鈥?5CrossRef
    Kimmerer WJ (2002) Effects of freshwater flow on abundance of estuarine organisms: physical effects or trophic linkages? Mar Eco Prog Series 243:39鈥?5CrossRef
    Kondo J, Watanabe T (1992) Studies on the bulk transfer coefficients over a vegetated surface with a multilayer energy budget model. J Atmo Sci 49(23):2183鈥?199, doi:10.1175/1520-0469(1992)049<2183:SOTBTC>2.0.CO;2CrossRef
    Kondo J, Yamazaki T (1990) A prediction model for snowmelt, snow surface temperature and freezing depth using a heat balance method. J Appl Meteorol 29:375鈥?84, doi:10.1175/1520-0450(1990)029<0375:APMFSS>2.0.CO;2CrossRef
    Kosaka Y, Ito H (2006) Japan. In: Shumway SE, Parsons GJ (eds) Scallops: biology, ecology and aquaculture. Elsevier, Amsterdam, the Netherlands, pp 1093鈥?141CrossRef
    Kudo I, Matsunaga K (1999) Environmental factors affecting the occurrence and production of the spring phytoplankton bloom in Funka Bay, Japan. J Oceanogr 55:505鈥?13CrossRef
    Kudo I, Yoshimura T, Yanada M, Matsunaga K (2000) Exhaustion of nitrate terminates a phytoplankton bloom in Funka Bay, Japan: change in SiO4:NO3 consumption rate during the bloom. Mar Ecol Prog Ser 193:45鈥?1CrossRef
    Lee CW, Kudo I, Yokokawa T, Yanada M, Maita Y (2002) Dynamics of bacterial respiration and related growth efficiency, dissolved nutrients and dissolved oxygen concentration in a subarctic coastal embayment. Mar Freshw Res 53:1鈥?CrossRef
    Leonard BP, MacVean MK, Lock AP (1993) Positivity-preserving numerical schemes for multidimensional advection. NASA Tech Memo 106055: 62 ICOMP-93-05, Washington, DC. http://鈥媙trs.鈥媙asa.鈥媑ov/鈥媋rchive/鈥媙asa/鈥媍asi.鈥媙trs.鈥媙asa.鈥媑ov/鈥?9930017902.鈥媝df
    Liu SM, Li RH, Zhang GL, Wang DR, Du JZ, Herbeck LS (2011) The impact of anthropogenic activities on nutrient dynamics in the tropical Wenchanghe and Wenjiaohe estuary and lagoon system in East Hainan, China. Mar Chemist 125:49鈥?8CrossRef
    McCreary JP, Zhang S, Shetye SR (1997) Coastal circulation driven by river outflow in a variable-density 1 1/2-layer model. J Geophys Res 102:15535鈥?5554CrossRef
    Minoda T, Fuji A (1985) Biological environments in Funka Bay. Tokai University Press p 1106, (In Japanese), Coastal Oceanography of Japanese Islands
    Miyake H, Tanka I, Murakami T (1988) Outflow of water from Funka Bay, Hokkaido, during early spring. J Oceanogr Soc Japan 44:163鈥?70, doi:10.1007/BF02302640CrossRef
    Motovilov Y, Gottschalk GL, England K, Rodhe A (1999) Validation of distributed hydrological model against spatial observations. Agric Forest Meteo 98鈥?9:257鈥?77, doi:10.1016/S0168- 1923(99)00102-1CrossRef
    Murphy AH, Epstein ES (1989) Skill scores and correlation coefficients in model verification. Mon Weather Rev 117:572鈥?81, doi:10.1175/1520-0493(1989)117<0572:SSACCI>2.0.CO;2CrossRef
    Nakada S, Yasumoto J, Taniguchi M, Ishitobi T (2011) Submarine groundwater discharge and seawater circulation in a subterranean estuarine beneath a tidal flat. Hydrol Process 25:2755鈥?763, doi:10.1002/hyp.8016CrossRef
    Nakada S, Ishikawa Y, Awaji T, In T, Shima S, Nakayama T, Isada T, Saitoh S (2012a) Modeling runoff into a region of freshwater influence for improved ocean prediction: an application in Funka Bay. Hydro Res Lett 6:47鈥?2CrossRef
    Nakada S, Uenaka T, Ishikawa Y, Matsui K, Sakamoto N, Koyamada K, Awaji T, Saitoh S (2012b) A visualization study of vortexes extracted from the tremendous ocean simulation data: an application in Funka Bay. Jpn Soc Sim Tech 4(4):145鈥?52, doi:org/10.1016/j.pocean.2013.10.008
    Nakada S, Ishikawa Y, Awaji T, In T, Koyamada K, Watanobe M, Okumura H, Nishida Y, Saitoh S (2013a) An integrated approach to the heat and water mass dynamics of a large bay: high-resolution simulations of Funka Bay, Japan. J Geophys Res Ocean 118:1鈥?8, doi:10.1002/jgrc.20262CrossRef
    Nakada S, Hirose N, Senjyu T, Fukudome K, Tsuji T, Okei N (2013b) Operational ocean prediction experiments for smart coastal fishing. Prog Oceanogr 121:125鈥?40, doi.org/10.1016/j.pocean.2013.10.008CrossRef
    Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models part I - a discussion of principles. J Hydro 10(3):282鈥?90, doi:10.1016/0022-1694(70)90255-6CrossRef
    Noh Y (2004) Sensitivity to wave breaking and the Prandtl number in the ocean mixed layer model and its dependence on latitude. Geophys Res Lett 31:L23305, doi:10.1029/2004GL021289CrossRef
    Oey LY, Chen P (1992) A nested-grid ocean model - with application to the simulation of meanders and eddies in the Norwegian coastal current. J Geophys Res 97:20063鈥?0086CrossRef
    Ohtani K (1981) Funka Bay (I) physical environments. Bull Coastal Oceanogr 19:68鈥?0 (in Japanese)
    Ohtani K, Kido K (1980) Oceanographic structure in Funka Bay, vol 31. Bull Fac Fish Hokkaido University, Hakodate, Japan, pp 84鈥?14
    Rosa AL, Isoda Y, Uehara K, Aiki T (2007) Seasonal variations of water system distribution and flow patterns in the southern sea area of Hokkaido, Japan. J Oceanogr 63:573鈥?88, doi:10.1007/s10872-007-0051-4CrossRef
    Sastry AM, BlakeSource NJ (1971) Regulation of gonad development in the bay scallop, Aequipecten irradians. Lamarck Biol Bull 140(2):274鈥?83CrossRef
    Satoh C, Isoda Y, Shimizu M (2003) Clockwise circulation in the upper layer of Funka Bay in summer. Bull Coast Oceanogr 40:181鈥?88 (In Japanese with English Abstract)
    Shimada H, Nishida Y, Ito Y, Mizushima T (2000) Relationship among growth and survival of cultured scallops (Patinopecten yessoensis JAY), and environmental condition in the coastal area off Yakumo, Funka Bay, Hokkaido, Japan. Sci Rep Hokkaido Fish Exp Stn 27:49鈥?2 (In Japanese with English Abstract)
    Simpson JH (1997) Physical processes in the ROFI regime. J Mar Syst 12:3鈥?5, doi:10.1016/S0924-7963(96)00085-1CrossRef
    Takahashi D, Kido K, Nishida Y, Kobayashi N, Higaki N, Miyake H (2007) Dynamical structure and wind-driven upwelling in a summertime anticyclonic eddy within Funka Bay, Hokkaido, Japan. Conti Shelf Res 27:1928鈥?946CrossRef
    Takahashi D, Miyake H, Nakayama T, Kobayashi N, Kido K, Nishida Y (2010) Response of a summertime anticyclonic eddy to wind forcing in Funka Bay, Hokkaido, Japan. Conti Shelf Res 30:1435鈥?449, doi:10.1016/j.csr.2010.05.003CrossRef
    Taniguchi M, Burnett WC, Cable JE, Turner JV (2002) Investigations of submarine groundwater discharge. Hydrol Process 16:2115鈥?129, doi:10.1002/hyp.1145CrossRef
    Uiboupin R, Arino O (2010) Study of snowmelt impact on SST and TSM fields in the coastal zone of Barents Sea. IEEE International Geoscience and Remote Sensing Symposium, pp 4212鈥?215, doi:10.1109/IGARSS.2010.5654375
    Willmott CJ, Matsuura K (2001) Terrestrial water budget data archive: monthly time series (1950-1999). http://鈥媍limate.鈥媑eog.鈥媢del.鈥媏du/鈥媬climate/鈥媓tml_鈥媝ages/鈥媋rchive.鈥媓tml
    Yoshimura T, Kudo I (2003) Riverine nutrient loadings and their impact on primary production in Funka Bay, Japan. Oceanogr Jpn 12:185鈥?93 (in Japanese with English abstract)CrossRef
    Yoshimura T, Kudo I (2011) Seasonal phosphorus depletion and microbial responses to the change in phosphorus, availability in a subarctic coastal environment. Mar Chemi 126:182鈥?92CrossRef
    Yoshimura K, Sakimura T, Oki T, Kanae S, Seto S (2008) Toward flood risk prediction: a statistical approach using a 29-year river discharge simulation over Japan. Hydro Res Lett 2:22鈥?6, doi:10.3178/hrl.2.22CrossRef
    Zhao K, Nakada S, Sakamoto N, Koyamada K, Bajaj C, Ishikawa Y, Awaji T, In T, Saitoh S (2013) A visualization for the dynamic behaviors of the mixture of water mass for Northwestern Pacific near Japan. Int J Model Simul Sci Comput 4(1341002):18, doi:10.1142/S179396231341002X
  • 作者单位:Satoshi Nakada (1) (6)
    Katsuhisa Baba (2)
    Masatoshi Sato (2)
    Masafumi Natsuike (3)
    Yoichi Ishikawa (4)
    Toshiyuki Awaji (5)
    Koji Koyamada (1)
    Sei-Ichi Saitoh (3)

    1. Institute for Liberal Arts and Sciences, Kyoto University, Kitashirakawa-Oiwake Cho, Sakyo-ku, Kyoto, 606-8502, Japan
    6. Graduate School of Maritime Sciences, Kobe University, 5-1-1 Fukae-minami, Higashi-nada-ku, Kobe, 658-0022, Japan
    2. Hokkaido Research Organization, Fisheries Research Department, Hakodate Fisheries Research Institute, 1-2-66 Yunokawa-cho, Hakodate, Hokkaido, 042-0932, Japan
    3. Faculty of Fisheries Sciences, Hokkaido University, 3-1-1, Minato-cho, Hakodate, Hokkaido, 041-8611, Japan
    4. Data Research Center for Marine-Earth Sciences, Japan Agency for Marine-Earth Science and Technology, Yokohama Institute for Earth Sciences, 3173-25 Showa-machi, Kanazawa-ku, Yokohama, Kanagawa, 236-0001, Japan
    5. Kyoto University Headquarters, Yoshida-Honmachi, Sakyo-ku, Kyoto, 606-8501, Japan
  • 刊物类别:Earth Sciences, general; Geophysics/Geodesy; Planetology; Biogeosciences; Hydrogeology; Atmospheric
  • 刊物主题:Earth Sciences, general; Geophysics/Geodesy; Planetology; Biogeosciences; Hydrogeology; Atmospheric Sciences;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:2197-4284
文摘
This study investigated the role of snowmelt runoff on water circulation, water mass formation, and the production of cultured scallop larvae, as a part of a land-sea linkage, by analyzing hydrological data in conjunction with nutrient data and by conducting sensitivity experiments based on a coupled land-sea model of Funka Bay, Japan, a typical semi-enclosed bay. A comparison between observed data and the simulated runoff showed that, using newly compiled datasets of nutrient concentrations in rivers and groundwater, the model was sufficiently accurate to estimate the terrestrial dissolved inorganic nitrogen (DIN) flux from the river and submarine groundwater discharges (SGDs). The average volume flux from the SGDs accounted for 26% of the riverine runoff flux. The DIN flux from SGDs accounted for a maximum of 40% of the total DIN loading to the bay before the snowmelt period. Sensitivity experiments using an ocean simulation indicated that the freshwater flux supplied by snowmelt runoff not only enhances clockwise circulations along with upwelling along the coast, but also modifies the distributions of wintertime water masses in the bay. However, the snowmelt runoff has little effect on larvae transport since wind forcing, rather than riverine buoyancy, dominates the circulation patterns. The annual density of scallop spat was highly correlated with snowmelt runoffs associated with high DIN concentrations, which suggested that riverine nutrients can increase the biomass of phytoplankton in near-shore seas and improve food availability for scallop spawners, resulting in increased egg production in March to April. Therefore, the nutrient flux from agricultural source areas through the large snowmelt runoff has an important role in larvae production. Land-sea linkages need to be identified to design sustainable and synergetic systems of aquaculture and agriculture for the integrated management of coastal regions. Keywords Snowmelt runoff Scallop aquaculture Land-sea linkage OGCM Nutrient flux Submarine groundwater discharge

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700