Evaluation of buoyancy dynamics in the early ontogenesis of climbing perch Anabas testudineus (Anabantidae)
详细信息    查看全文
  • 作者:K. F. Dzerzhinskiy
  • 关键词:climbing perch Anabas testudineus ; early ontogenesis ; buoyancy assessment technique ; density ; dispersions ; freshwater
  • 刊名:Journal of Ichthyology
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:56
  • 期:1
  • 页码:133-140
  • 全文大小:566 KB
  • 参考文献:Amornsakun, T., Sriwatana, W., and Promkaew, P., Some aspects in early life stage of climbing perch, Anabas testudineus larvae, J. Sci. Technol., 2005, vol. 27, suppl. 1, pp. 403–418.
    Araujo-Lima, C.A.R.M. and Oliveira, E.C., Transport of larval fish in the Amazon, J. Fish Biol., 1998, vol. 53, pp. 297–306.CrossRef
    Bardet, J.-P. and Young, J., Grain-size analysis by buoyancy method, Geotech. Test. J., 1997, vol. 20, no. 4, pp. 481–485.CrossRef
    Bogatova, O.V. and Dogareva, N.G., Khimiya i fizika moloka (Chemistry and Physics of Milk), Orenburg: Orenb. Gos. Univ., 2004.
    Cambalik, J.J., Checkley, D.M., and Kamykovski, D., A new method to measure the terminal velocity of small particles: a demonstration using ascending eggs of the Atlantic menhaden (Brevoortia tyrannus), Limnol. Oceanogr., 1998, vol. 43, no. 7, pp. 1722–1727.CrossRef
    Chiappa-Carrara, X., Rioja-Nieto, R., and Mascaro, M., Mass density assessment: comparison of three methods using Oikopleura dioica (Appendicularia) as a model system, Caribb. J. Sci., 2006, vol. 42, no. 2, pp. 231–238.
    Coombs, S.H., A density-gradient column for determining the specific gravity of fish eggs, with special reference to eggs of mackerel Scomber scombrus, Mar. Biol., 1981, vol. 63, pp. 101–106.CrossRef
    Coombs, S.H., Boyra, G., Rueda, L.D., et al., Buoyancy measurements and vertical distribution of eggs of sardine (Sardina pilchardus) and anchovy (Engraulis encrasicolus), Mar. Biol., 2004, vol. 145, no. 5, pp. 959–970.CrossRef
    Coombs, S.H., Fosh, C.A., and Keen, M.A., The buoyancy and vertical distribution of eggs of sprat (Sprattus sprattus) and pilchard (Sardina pilchardus), J. Mar. Biol. Ass. U.K., 1985, vol. 65, pp. 461–474.CrossRef
    Cowley, D., Alleman, J.C., Sallenave, R., et al., Effects of salinity on specific gravity and viability of eggs of a North American minnow (Cyprinidae), Sci. Mar., 2009, vol. 73, suppl. 1, pp. 47–58.CrossRef
    Davis, C.C., A planktonic fish egg from fresh water, Limnol. Oceanogr., 1959, vol. 4, pp. 352–355.CrossRef
    Dudley, R.K. and Platania, S.P., Imitating the physical properties of drifting semibuoyant fish (Cyprinidae) eggs with artificial eggs, J. Freshwater Ecol., 1999, vol. 14, no. 4, pp. 423–430.CrossRef
    Dzerzhinsky, K.F., Suspended matter and hydrobiont buoyancy as exemplified by fish eggs, Dokl. Biol. Sci., 2012, vol. 443, no. 1, pp. 106–108.CrossRef PubMed
    Frolov, Yu.G., Kurs kolloidnoi khimii (Lecturers on Colloid Chemistry), Moscow: Khimiya, 1982.
    GSSSD 2-77. Tablitsy standartov spravochnykh dannykh. Voda. Plotnost’ pri atmosfernom davlenii i temperaturakh ot 0 do 100°C (GSSSD 2-77. Tables of Standards of References Data. Water. Density at Atmospheric Pressure and Temperatures from 0 to 100°C), Moscow: Izd. Standartov, 1978.
    Haug, T., Kjorsvik, E., and Solemdal, P., Influence of some physical and biological factors on the density and vertical distribution of Atlantic halibut Hippoglossus hippoglossus eggs, Mar. Ecol.: Progr. Ser., 1986, vol. 33, pp. 207–216.CrossRef
    Konstantinov, A.S., Obshchaya gidrobiologiya (General Hydrobiology), Moscow: Vysshaya Shkola, 1986.
    Kurenkov, V.F., Nadezhdin, I.N., Zhelonkina, T.A., Hartan, H.-G., and Lobanov, F.I., Stabilization of kaolin suspension in the presence of copolymers of sodium 2-acrylamido-2-methylpropanesulfonate with N-vinylpyrrolidone, Russ. J. Appl. Chem., 2006, vol. 79, no. 1, pp. 142–145.CrossRef
    Logvinenko, N.V. and Sergeeva, E.I., Metody opredeleniya osdochnykh porod: uchebnoe posobie dlya vuzov (The Methods for Analysis of Sediments: Manual for High Education Students), Leningrad: Nedra, 1985.
    Makeeva, A.P. and Pavlov, D.S., Morphological characteristics and general features for determination of eggs of Russian pelagic freshwater fishes, Vopr. Ikhtiol., 2000, vol. 40, no. 6, pp. 780–791.
    Makeeva, A.P., Pavlov, D.S., and Pavlov, D.A., Atlas molodi presnovodnykh ryb Rossii (Atlas of Freshwater Fish Juveniles of Russia), Moscow: KMK, 2011.
    Mellinger, J., La flottabilité des oeufs de téléostéens, Ann. Biol., 1994, vol. 33, no. 3, pp. 117–138.
    Moitra, A., Ghosh, T.K., Pandey, A., and Munshi, J.S.D., Scanning electron microscopy of the post-embryonic stages of the climbing perch, Anabas testudineus, Jpn. J. Ichthyol., 1987, vol. 34, no. 1, pp. 53–58.
    Morioka, S., Ito, S., Kitamura, S., and Vongvichith, B., Growth and morphological development of laboratoryreared larval and juvenile climbing perch Anabas testudineus, Ichthyol. Res., 2009, vol. 56, no. 2, pp. 162–171.CrossRef
    Nissling, A., Kryvi, H., and Vallin, L., Variation in egg buoyancy of Baltic cod Gadus morhua and its implications for egg survival in prevailing conditions in the Baltic Sea, Mar. Ecol.: Progr. Ser., 1994, vol. 110, pp. 67–74.CrossRef
    Ospina-lvarez, A., Palomera, I., and Parada, C., Changes in egg buoyancy during development and its effects on the vertical distribution of anchovy eggs, Fish. Res., 2012, vols. 117–118, pp. 86–95.CrossRef
    Palla, B.J. and Shah, D.O., Stabilization of high ionic strength slurries using the synergistic effects of a mixed surfactant system, J. Colloid Interface Sci., 2000, vol. 223, pp. 102–111.CrossRef PubMed
    Power, J.H., Morriwson, W.L., and Zeringue, J., Determining the mass, volume, density, and weight in water of small zooplankters, Mar. Biol., 1991, vol. 110, pp. 267–271.CrossRef
    Saborido-Rey, F., Kjesbu, O.S., and Thorsen, A., Buoyancy of Atlantic cod larvae in relation to developmental stage and maternal influences, J. Plankton Res., 2003, vol. 25, no. 3, pp. 291–307.CrossRef
    Smalley, M.V., Clay Swelling and Colloid Stability, Boca Raton, FL: CRC Press, 2006.
    Soin, S.G., Prisposobitel’nye osobennosti razvitiya ryb (Adaptive Features of Fish Development), Moscow: Mosk. Gos. Univ., 1968
    Soin, S.G., Avni, A.A., and Dorbachev, V.P., Adaptive features of development of climbing perches (Anabantidae), Vopr. Ikhtiol., 1973, vol. 13, no. 6(83), pp. 1056–1064.
    Solemdal, P., The effect of salinity on buoyancy, size, and development of flounder eggs, Sarsia, 1967, vol. 29, no. 1, pp. 431–442.CrossRef
    Sundby, S., A one-dimensional model for the vertical distribution of pelagic fish eggs in the mixed layer, Deep-Sea Res., 1983, vol. 30, pp. 645–661.CrossRef
    Zalina, I., Saad, C.R., Christianus, A., and Harmin, S.A., Induced breeding and embryonic development of climbing perch (Anabas testudineus, Bloch), J. Fish. Aquat. Sci., 2012, vol. 7, no. 5, pp. 291–306.CrossRef
    Zotin, A.I., Fiziologiya vodnogo obmena u zarodyshei ryb i kruglorotykh (Physiology of Water Exchange in Fish Embryos and Cyclostomata), Moscow: Akad. Nauk SSSR, 1961.
    Zworykin, D.D., Reproduction and spawning behavior of the climbing perch Anabas testudineus (Perciformes, Anabantidae) in an aquarium, J. Ichthyol., 2012, vol. 52, no. 6, pp. 379–388.CrossRef
  • 作者单位:K. F. Dzerzhinskiy (1)

    1. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, pr. Leninskii 33, 119071, Moscow, Russia
  • 刊物主题:Zoology;
  • 出版者:Springer US
  • ISSN:1555-6425
文摘
The paper puts forward a new approach to estimation of buoyancy of hydrobionts using dispersion of various densities. The technique was applied to evaluate buoyancy variations in climbing perch Anabas testudineus at its early ontogeny. It was found that positive buoyancy characteristic of eggs and early stage larvae does not remain longer than the first eighty hours of development. Besides, this period is marked by significant fluctuations in buoyancy. The maximum buoyancy was recorded at the time of hatching of the embryos, which occurs at the age of approximately thirty hours. At ninety hours the buoyancy of larvae becomes negative. Later, it goes up somewhat, and the individual differences become more important in its dynamics pattern. Some individuals are neutrally buoyant, though no return to positive buoyancy was observed. The estimates obtained by the author create a foundation for further morphofunctional analysis of the hydrostatically significant structures in the early development of the climbing perch.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700