LC3, an autophagosome marker, is expressed on oligodendrocytes in Nasu-Hakola disease brains
详细信息    查看全文
  • 作者:Jun-ichi Satoh (13)
    Nobutaka Motohashi (14)
    Yoshihiro Kino (13)
    Tsuyoshi Ishida (15)
    Saburo Yagishita (16)
    Kenji Jinnai (17)
    Nobutaka Arai (18)
    Kiyotaka Nakamagoe (19)
    Akira Tamaoka (19)
    Yuko Saito (20)
    Kunimasa Arima (21)

    13. Department of Bioinformatics and Molecular Neuropathology
    ; Meiji Pharmaceutical University ; Tokyo ; Japan
    14. Department of Psychiatry
    ; University of Yamanashi ; Faculty of Medicine ; Yamanashi ; Japan
    15. Department of Pathology and Laboratory Medicine
    ; Kohnodai Hospital ; National Center for Global Health and Medicine ; Chiba ; Japan
    16. Department of Pathology
    ; Kanagawa Rehabilitation Center ; Kanagawa ; Japan
    17. Department of Neurology
    ; NHO Hyogo-Chuo Hospital ; Hyogo ; Japan
    18. Brain Pathology Research Center
    ; Tokyo Metropolitan Institute of Medical Science ; Tokyo ; Japan
    19. Department of Neurology
    ; Institute of Clinical Medicine ; University of Tsukuba ; Ibaraki ; Japan
    20. Department of Laboratory Medicine
    ; National Center Hospital ; NCNP ; Tokyo ; Japan
    21. Department of Psychiatry
    ; National Center Hospital ; NCNP ; Tokyo ; Japan
  • 关键词:Autophagy ; LC3 ; Leukoencephalopathy ; Nasu ; Hakola disease ; Oligodendrocytes
  • 刊名:Orphanet Journal of Rare Diseases
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:9
  • 期:1
  • 全文大小:1,632 KB
  • 参考文献:1. Nasu, T, Tsukahara, Y, Terayama, K (1973) A lipid metabolic disease - 鈥淢embranous lipodystrophy鈥?- an autopsy case demonstrating numerous peculiar membrane-structures composed of compound lipid in bone and bone marrow and various adipose tissues. Acta Pathol Jpn 23: pp. 539-558
    2. Hakola, HP (1972) Neuropsychiatric and genetic aspects of a new hereditary disease characterized by progressive dementia and lipomembranous polycystic osteodysplasia. Acta Psychiatr Scand Suppl 232: pp. 1-173
    3. Bianchin, MM, Capella, HM, Chaves, DL, Steindel, M, Grisard, EC, Ganev, GG, da Silva J煤nior, JP, Neto Evaldo, S, Poffo, MA, Walz, R, Carlotti J煤nior, CG, Sakamoto, AC (2004) Nasu-Hakola disease (polycystic lipomembranous osteodysplasia with sclerosing leukoencephalopathy - PLOSL): a dementia associated with bone cystic lesions. From clinical to genetic and molecular aspects. Cell Mol Neurobiol 24: pp. 1-24 CrossRef
    4. Tanaka, J (2000) Nasu-Hakola disease: a review of its leukoencephalopathic and membranolipodystrophic features. Neuropathology 20: pp. S25-S29 CrossRef
    5. Kl眉nemann, HH, Ridha, BH, Magy, L, Wherrett, JR, Hemelsoet, DM, Keen, RW, De Bleecker, JL, Rossor, MN, Marienhagen, J, Klein, HE, Peltonen, L, Paloneva, J (2005) The genetic causes of basal ganglia calcification, dementia, and bone cysts: DAP12 and TREM2. Neurology 64: pp. 1502-1507 CrossRef
    6. Paloneva, J, Manninen, T, Christman, G, Hovanes, K, Mandelin, J, Adolfsson, R, Bianchin, M, Bird, T, Miranda, R, Salmaggi, A, Tranebjaerg, L, Konttinen, Y, Peltonen, L (2002) Mutations in two genes encoding different subunits of a receptor signaling complex result in an identical disease phenotype. Am J Hum Genet 71: pp. 656-662 CrossRef
    7. Kondo, T, Takahashi, K, Kohara, N, Takahashi, Y, Hayashi, S, Takahashi, H, Matsuo, H, Yamazaki, M, Inoue, K, Miyamoto, K, Yamamura, T (2002) Heterogeneity of presenile dementia with bone cysts (Nasu-Hakola disease): three genetic forms. Neurology 59: pp. 1105-1107 CrossRef
    8. Sundal, C, Lash, J, Aasly, J, 脴ygarden, S, Roeber, S, Kretzschman, H, Garbern, JY, Tselis, A, Rademakers, R, Dickson, DW, Broderick, D, Wszolek, ZK (2012) Hereditary diffuse leukoencephalopathy with axonal spheroids (HDLS): a misdiagnosed disease entity. J Neurol Sci 314: pp. 130-137 CrossRef
    9. Colonna, M (2003) TREMs in the immune system and beyond. Nat Rev Immunol 3: pp. 445-453 CrossRef
    10. Ivashkiv, LB (2009) Cross-regulation of signaling by ITAM-associated receptors. Nat Immunol 10: pp. 340-347 CrossRef
    11. Satoh, J (2013) Possible role of microgliopathy in the pathogenesis of Nasu-Hakola disease. Clin Exp Neuroimmunol 4: pp. 17-26 CrossRef
    12. Kaifu, T, Nakahara, J, Inui, M, Mishima, K, Momiyama, T, Kaji, M, Sugahara, A, Koito, H, Ujike-Asai, A, Nakamura, A, Kanazawa, K, Tan-Takeuchi, K, Iwasaki, K, Yokoyama, WM, Kudo, A, Fujiwara, M, Asou, H, Takai, T (2003) Osteopetrosis and thalamic hypomyelinosis with synaptic degeneration in DAP12-deficient mice. J Clin Invest 111: pp. 323-332 CrossRef
    13. Kiialainen, A, Hovanes, K, Paloneva, J, Kopra, O, Peltonen, L (2005) Dap12 and Trem2, molecules involved in innate immunity and neurodegeneration, are co-expressed in the CNS. Neurobiol Dis 18: pp. 314-322 CrossRef
    14. Thrash, JC, Torbett, BE, Carson, MJ (2009) Developmental regulation of TREM2 and DAP12 expression in the murine CNS: implications for Nasu-Hakola disease. Neurochem Res 34: pp. 38-45 CrossRef
    15. Roumier, A, B茅chade, C, Poncer, JC, Smalla, KH, Tomasello, E, Vivier, E, Gundelfinger, ED, Triller, A, Bessis, A (2004) Impaired synaptic function in the microglial KARAP/DAP12-deficient mouse. J Neurosci 24: pp. 11421-11428 CrossRef
    16. Nataf, S, Anginot, A, Vuaillat, C, Malaval, L, Fodil, N, Chereul, E, Langlois, JB, Dumontel, C, Cavillon, G, Confavreux, C, Mazzorana, M, Vico, L, Belin, MF, Vivier, E, Tomasello, E, Jurdic, P (2005) Brain and bone damage in KARAP/DAP12 loss-of-function mice correlate with alterations in microglia and osteoclast lineages. Am J Pathol 166: pp. 275-286 CrossRef
    17. Otero, K, Turnbull, IR, Poliani, PL, Vermi, W, Cerutti, E, Aoshi, T, Tassi, I, Takai, T, Stanley, SL, Miller, M, Shaw, AS, Colonna, M (2009) Macrophage colony-stimulating factor induces the proliferation and survival of macrophages via a pathway involving DAP12 and 尾-catenin. Nat Immunol 10: pp. 734-743 CrossRef
    18. Takahashi, K, Rochford, CD, Neumann, H (2005) Clearance of apoptotic neurons without inflammation by microglial triggering receptor expressed on myeloid cells-2. J Exp Med 201: pp. 647-657 CrossRef
    19. Satoh, J, Tabunoki, H, Ishida, T, Yagishita, S, Jinnai, K, Futamura, N, Kobayashi, M, Toyoshima, I, Yoshioka, T, Enomoto, K, Arai, N, Arima, K (2011) Immunohistochemical characterization of microglia in Nasu-Hakola disease brains. Neuropathology 31: pp. 363-375 CrossRef
    20. Ravikumar, B, Sarkar, S, Davies, JE, Futter, M, Garcia-Arencibia, M, Green-Thompson, ZW, Jimenez-Sanchez, M, Korolchuk, VI, Lichtenberg, M, Luo, S, Massey, DC, Menzies, FM, Moreau, K, Narayanan, U, Renna, M, Siddiqi, FH, Underwood, BR, Winslow, AR, Rubinsztein, DC (2010) Regulation of mammalian autophagy in physiology and pathophysiology. Physiol Rev 90: pp. 1383-1435 CrossRef
    21. Mizushima, N, Komatsu, M (2011) Autophagy: renovation of cells and tissues. Cell 147: pp. 728-741 CrossRef
    22. Hara, T, Nakamura, K, Matsui, M, Yamamoto, A, Nakahara, Y, Suzuki-Migishima, R, Yokoyama, M, Mishima, K, Saito, I, Okano, H, Mizushima, N (2006) Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441: pp. 885-889 CrossRef
    23. Nixon, RA (2013) The role of autophagy in neurodegenerative disease. Nat Med 19: pp. 983-997 CrossRef
    24. Hsieh, CL, Koike, M, Spusta, SC, Niemi, EC, Yenari, M, Nakamura, MC, Seaman, WE (2009) A role for TREM2 ligands in the phagocytosis of apoptotic neuronal cells by microglia. J Neurochem 109: pp. 1144-1156 CrossRef
    25. Martinez, J, Almendinger, J, Oberst, A, Ness, R, Dillon, CP, Fitzgerald, P, Hengartner, MO, Green, DR (2011) Microtubule-associated protein 1 light chain 3 alpha (LC3)-associated phagocytosis is required for the efficient clearance of dead cells. Proc Natl Acad Sci USA 108: pp. 17396-17401 CrossRef
    26. Nakamagoe, K, Shioya, A, Yamaguchi, T, Takahashi, H, Koide, R, Monzen, T, Satoh, J, Tamaoka, A (2011) A Japanese case with Nasu-Hakola disease of DAP12 gene mutation exhibiting precuneus hypoperfusion. Intern Med 50: pp. 2839-2844 CrossRef
    27. Yagishita, S, Ito, Y, Sakai, H, Amano, N (1985) Membranocystic lesions of the lung in Nasu-Hakola disease. Virchows Arch A Pathol Anat Histopathol 408: pp. 211-217 CrossRef
    28. Motohashi, N, Shinohara, M, Shioe, K, Fukuzawa, H, Akiyama, Y, Kariya, T (1995) A case of membranous lipodystrophy (Nasu-Hakola disease) with unique MRI findings. Neuroradiology 37: pp. 549-550 CrossRef
    29. Kuhlmann, T, Remington, L, Maruschak, B, Owens, T, Br眉ck, W (2007) Nogo-A is a reliable oligodendroglial marker in adult human and mouse CNS and in demyelinated lesions. J Neuropathol Exp Neurol 66: pp. 238-246 CrossRef
    30. Ohtani, K, Suzumura, A, Sawada, M, Marunouchi, T, Nakashima, I, Takahashi, A (1992) Establishment of mouse oligodendrocyte/type-2 astrocyte lineage cell line by transfection with origin-defective simian virus 40 DNA. Cell Struct Funct 17: pp. 325-333 CrossRef
    31. Lee, Y, Morrison, BM, Li, Y, Lengacher, S, Farah, MH, Hoffman, PN, Liu, Y, Tsingalia, A, Jin, L, Zhang, PW, Pellerin, L, Magistretti, PJ, Rothstein, JD (2012) Oligodendroglia metabolically support axons and contribute to neurodegeneration. Nature 487: pp. 443-448 CrossRef
    32. Lucchinetti, CF, Popescu, BF, Bunyan, RF, Moll, NM, Roemer, SF, Lassmann, H, Br眉ck, W, Parisi, JE, Scheithauer, BW, Giannini, C, Weigand, SD, Mandrekar, J, Ransohoff, RM (2011) Inflammatory cortical demyelination in early multiple sclerosis. N Engl J Med 365: pp. 2188-2197 CrossRef
    33. Aoki, N, Tsuchiya, K, Togo, T, Kobayashi, Z, Uchikado, H, Katsuse, O, Suzuki, K, Fujishiro, H, Arai, T, Iseki, E, Anno, M, Kosaka, K, Akiyama, H, Hirayasu, Y (2011) Gray matter lesions in Nasu-Hakola disease: a report on three autopsy cases. Neuropathology 31: pp. 135-143 CrossRef
    34. Lee, KM, Hwang, SK, Lee, JA (2013) Neuronal autophagy and neurodevelopmental disorders. Exp Neurobiol 22: pp. 133-142 CrossRef
    35. Numasawa, Y, Yamaura, C, Ishihara, S, Shintani, S, Yamazaki, M, Tabunoki, H, Satoh, JI (2011) Nasu-Hakola disease with a splicing mutation of TREM2 in a Japanese family. Eur J Neurol 18: pp. 1179-1183 CrossRef
    36. Behrends, C, Sowa, ME, Gygi, SP, Harper, JW (2010) Network organization of the human autophagy system. Nature 466: pp. 68-76 CrossRef
    37. Ding, Q, Dimayuga, E, Martin, S, Bruce-Keller, AJ, Nukala, V, Cuervo, AM, Keller, JN (2003) Characterization of chronic low-level proteasome inhibition on neural homeostasis. J Neurochem 86: pp. 489-497
    38. Kn忙velsrud, H, Simonsen, A (2010) Fighting disease by selective autophagy of aggregate-prone proteins. FEBS Lett 584: pp. 2635-2645 CrossRef
    39. Rothenberg, C, Srinivasan, D, Mah, L, Kaushik, S, Peterhoff, CM, Ugolino, J, Fang, S, Cuervo, AM, Nixon, RA, Monteiro, MJ (2010) Ubiquilin functions in autophagy and is degraded by chaperone-mediated autophagy. Hum Mol Genet 19: pp. 3219-3232 CrossRef
    40. Deretic, V, Saitoh, T, Akira, S (2013) Autophagy in infection, inflammation and immunity. Nat Rev Immunol 13: pp. 722-737 CrossRef
    41. Kawaguchi, Y, Kovacs, JJ, McLaurin, A, Vance, JM, Ito, A, Yao, TP (2003) The deacetylase HDAC6 regulates aggresome formation and cell viability in response to misfolded protein stress. Cell 115: pp. 727-738 CrossRef
    42. Heir, R, Ablasou, C, Dumontier, E, Elliott, M, Fagotto-Kaufmann, C, Bedford, FK (2006) The UBL domain of PLIC-1 regulates aggresome formation. EMBO Rep 7: pp. 1252-1258 CrossRef
    43. Komatsu, M, Waguri, S, Koike, M, Sou, YS, Ueno, T, Hara, T, Mizushima, N, Iwata, J, Ezaki, J, Murata, S, Hamazaki, J, Nishito, Y, Iemura, S, Natsume, T, Yanagawa, T, Uwayama, J, Warabi, E, Yoshida, H, Ishii, T, Kobayashi, A, Yamamoto, M, Yue, Z, Uchiyama, Y, Kominami, E, Tanaka, K (2007) Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell 131: pp. 1149-1163 CrossRef
    44. Smith, CM, Mayer, JA, Duncan, ID (2013) Autophagy promotes oligodendrocyte survival and function following dysmyelination in a long-lived myelin mutant. J Neurosci 33: pp. 8088-8100 CrossRef
    45. Sciarretta, S, Hariharan, N, Monden, Y, Zablocki, D, Sadoshima, J (2011) Is autophagy in response to ischemia and reperfusion protective or detrimental for the heart?. Pediatr Cardiol 32: pp. 275-281 CrossRef
    46. Jia, L, Dourmashkin, RR, Allen, PD, Gray, AB, Newland, AC, Kelsey, SM (1997) Inhibition of autophagy abrogates tumour necrosis factor alpha induced apoptosis in human T-lymphoblastic leukaemic cells. Br J Haematol 98: pp. 673-685 CrossRef
    47. Xue, L, Fletcher, GC, Tolkovsky, AM (1999) Autophagy is activated by apoptotic signalling in sympathetic neurons: an alternative mechanism of death execution. Mol Cell Neurosci 14: pp. 180-198 CrossRef
    48. Pattingre, S, Tassa, A, Qu, X, Garuti, R, Liang, XH, Mizushima, N, Packer, M, Schneider, MD, Levine, B (2005) Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 122: pp. 927-939 CrossRef
    49. Caccamo, A, Majumder, S, Richardson, A, Strong, R, Oddo, S (2010) Molecular interplay between mammalian target of rapamycin (mTOR), amyloid-b, and Tau: effects on cognitive impairments. J Biol Chem 285: pp. 13107-13120 CrossRef
    50. Wang, IF, Guo, BS, Liu, YC, Wu, CC, Yang, CH, Tsai, KJ, Shen, CK (2012) Autophagy activators rescue and alleviate pathogenesis of a mouse model with proteinopathies of the TAR DNA-binding protein 43. Proc Natl Acad Sci USA 109: pp. 15024-15029 CrossRef
    51. Tyler, WA, Gangoli, N, Gokina, P, Kim, HA, Covey, M, Levison, SW, Wood, TL (2009) Activation of the mammalian target of rapamycin (mTOR) is essential for oligodendrocyte differentiation. J Neurosci 29: pp. 6367-6378 CrossRef
  • 刊物主题:Medicine/Public Health, general; Pharmacology/Toxicology; Medicinal Chemistry;
  • 出版者:BioMed Central
  • ISSN:1750-1172
文摘
Background Nasu-Hakola disease (NHD) is a rare autosomal recessive disorder characterized by sclerosing leukoencephalopathy and multifocal bone cysts, caused by a loss-of-function mutation of either DAP12 or TREM2. TREM2 and DAP12 constitute a receptor/adaptor signaling complex expressed exclusively on osteoclasts, dendritic cells, macrophages, and microglia. Neuropathologically, NHD exhibits profound loss of myelin and accumulation of axonal spheroids, accompanied by intense gliosis accentuated in the white matter of the frontal and temporal lobes. At present, the molecular mechanism responsible for development of leukoencephalopathy in NHD brains remains totally unknown. Methods By immunohistochemistry, we studied the expression of microtubule-associated protein 1 light chain 3 (LC3), an autophagosome marker, in 5 NHD and 12 control brains. Results In all NHD brains, Nogo-A-positive, CNPase-positive oligodendrocytes surviving in the non-demyelinated white matter intensely expressed LC3. They also expressed ubiquitin, ubiquilin-1, and histone deacetylase 6 (HDAC6) but did not express Beclin 1 or sequestosome 1 (p62). Substantial numbers of axonal spheroids were also labeled with LC3 in NHD brains. In contrast, none of oligodendrocytes expressed LC3 in control brains. Furthermore, surviving oligodendrocytes located at the demyelinated lesion edge of multiple sclerosis (MS) did not express LC3, whereas infiltrating Iba1-positive macrophages and microglia intensely expressed LC3 in MS lesions. Conclusions These results propose a novel hypothesis that aberrant regulation of autophagy might induce oligodendrogliopathy causative of leukoencephalopathy in NHD brains.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700