Densities of Fe–Ni melts and thermodynamic correlations
详细信息    查看全文
  • 作者:Manabu Watanabe ; Masayoshi Adachi ; Hiroyuki Fukuyama
  • 刊名:Journal of Materials Science
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:51
  • 期:7
  • 页码:3303-3310
  • 全文大小:1,421 KB
  • 参考文献:1.Pollock TM, Tin S (2006) Nickel-based superalloys for advanced turbine engines: chemistry, microstructure, and properties. J Propuls Power 22(2):361–374CrossRef
    2.Reed RC, Tao T, Warnken N (2009) Alloys-by-design: application to nickel-based single crystal superalloys. Acta Mater 57:5898–5913CrossRef
    3.Ukai S, Mizuta S, Fujiwara M, Okuda T, Kobayashi T (2002) Development of 9Cr-ODS martensitic steel claddings for fuel pins by means of ferrite to austenite phase transformation. J Nucl Sci Technol 39(7):778–788CrossRef
    4.Paradis PF, Ishikawa T, Watanabe Y, Okada J (2011) Hybrid processing combining electrostatic levitation and laser heating: application to terrestrial analogues of asteroid materials. Adv Opt Technol 2011:1–8CrossRef
    5.Brillo J, Egry I (2004) Density and excess volume of liquid copper, nickel, iron, and their binary alloys. Z Metallkd 95:691–697CrossRef
    6.Kobatake H, Brillo J (2013) Density and thermal expansion of Cr–Fe, Fe–Ni, and Cr–Ni binary liquid alloys. J Mater Sci 48:4934–4941. doi:10.​1007/​s10853-013-7274-0 CrossRef
    7.Fukuyama H, Takahashi K, Sakashita S, Kobatake H, Tsukada T, Awaji S (2009) Noncontact modulated laser calorimetry for liquid austenitic stainless steel in dc magnetic field. ISIJ Int 49:1436–1442CrossRef
    8.Sugie K, Kobatake H, Uchikoshi M, Isshiki M, Sugioka K, Tsukada T, Fukuyama H (2011) Noncontact laser modulation calorimetry for high-purity liquid iron. Jpn J Appl Phys 50:11RD04-1-6CrossRef
    9.Baba Y, Inoue T, Sugioka K, Kobatake H, Fukuyama H, Kubo M, Tsukada T (2012) Thermal conductivity measurement of molten copper using an electromagnetic levitator superimposed with a static magnetic field. Meas Sci Technol 23:045103CrossRef
    10.Adachi M, Aoyagi T, Mizuno A, Watanabe M, Kobatake H, Fukuyama H (2008) Precise density measurements for electromagnetically levitated liquid combined with surface oscillation analysis. Int J Thermophys 29:2006–2014CrossRef
    11.Watanabe M, Adachi M, Morishita T, Higuchi K, Kobatake H, Fukuyama H (2007) Does supercooled liquid Si have a density maximum? Faraday Discuss 136:279–286CrossRef
    12.Mizuno A, Kawauchi H, Tanno M, Kobatake H, Fukuyama H, Tsukada T, Watanabe M (2014) Concentration dependence of molar volume of binary Si alloys in liquid state. ISIJ Int 54:2120–2124CrossRef
    13.Swartzendruber LJ, Itkin VP, Alcock CB (1991) The Fe–Ni (iron–nickel) system. J Phase Equilib 12:288–312CrossRef
    14.Ishikawa T, Paradis PF, Yoda S (2001) New sample levitation initiation and imaging techniques for the processing of refractory metals with an electrostatic levitator furnace. Rev Sci Instrum 72:2490–2495CrossRef
    15.Zellars GR, Payne SL, Morris JP, Kipp RL (1959) The activities of iron and nickel in liquid Fe–Ni alloys. Trans Metall Soc AIME 215:181–185
    16.Belton GR, Fruehan RJ (1967) Determination of activities by mass spectrometry. I. The liquid metallic systems iron–nickel and iron–cobalt. J Phys Chem 71:1403–1409CrossRef
    17.Speiser R, Jacobs AJ, Spretnak JW (1959) Activities of iron and nickel in liquid iron–nickel solutions. Trans Metall Soc AIME 215:185–192
    18.Maruyama N, Ban-ya S (1978) Measurement of activities in liquid Fe–Ni, Fe–Co and Ni–Co alloys by a transportation method. J Inst Met Jpn 42:992–999
    19.Rammensee W, Fraser DG (1981) Activities in solid and liquid Fe–Ni and Fe–Co alloys determined by Knudsen cell mass spectrometry. Phys Chem 85:588–592
    20.Predel B, Mohs R (1970) Thermodynamic investigations of the iron–nickel and iron–cobalt systems. Arch Eisenhuttenwes 41:143–149
    21.Batalin GI, Minenko NN, Sudavtsova VS (1974) Enthalpy of mixing and thermodynamic properties of molten alloys of Fe with Mn, Co and Ni. Russ Metall 5:99–103
    22.Scatchard G (1937) Change of volume on mixing and the equations for non-electrolyte mixtures. Trans Faraday Soc 33:160–166CrossRef
    23.Kleppa OJ (1960) The volume change on mixing in liquid metallic solutions. I. Alloys of cadmium with indium, tin, thallium, lead and bismuth. J Phys Chem 64:1542–1546CrossRef
    24.Kleppa OJ, Kaplan M, Thalmayer CE (1961) The volume change on mixing in liquid metallic solutions II. Some binary alloys involving mercury, zinc and bismuth1. J Phys Chem 65:843–849CrossRef
    25.Predel B, Eman A (1969) Überschuβvolumina flüssiger Legierungen der Systeme Bi–Sn, Sn–Tl, Pb–Sn, Bi–Tl, Hg–In, Hg–Tl und Pb–Tl. Mater Sci Eng 4:287–296CrossRef
    26.Crawley AF (1974) Densities of liquid metals and alloys. Int Met Rev 19:32–48CrossRef
    27.Marcus Y (1977) Introduction to liquid state chemistry. Ch. 8. Wiley, London
    28.Kubaschewski O, Alcock CB (1979) Metallurgical thermochemistry, 5th edn. Pergamon Press, Oxford
    29.Iida T, Guthrie RIL (1988) The physical properties of liquid metals. Clarendon Press, Oxford
    30.Brillo J, Egry I, Ho I (2006) Density and thermal expansion of liquid Ag–Cu and Ag–Au alloys. Int J Thermophys 27:494–506CrossRef
    31.Brillo J, Egry I, Giffard HS, Patti A (2004) Density and thermal expansion of liquid Au–Cu alloys. Int J Thermophys 25:1881–1888CrossRef
    32.Brillo J, Egry I, Matsushita T (2006) Density and excess volumes of liquid copper, cobalt, iron and their binary and ternary alloys. Int J Mater Res 97:1526–1532CrossRef
    33.Brillo J, Egry I (2003) Density determination of liquid copper, nickel, and their alloys. Int J Thermophys 24:1155–1170CrossRef
    34.Brillo J, Egry I, Westphal J (2008) Density and thermal expansion of liquid binary Al–Ag and Al–Cu alloys. Int J Mater Res 99:162CrossRef
    35.Plevachuk Y, Egry I, Brillo J, Holland-Moritz D, Kaban I (2007) Density and atomic volume in liquid Al–Fe and Al–Ni binary alloys. Int J Mater Res 98:107–111CrossRef
    36.Maruyama N, Ban-ya S (1980) Measurement of the activities in molten Fe–Cu, Fe–Cr, and Fe–Sn alloys by a transportation method. J Jpn Inst Met Mater 44:1422–1431
    37.Edwards RK, Downing JH (1956) The thermodynamics of the liquid solutions in the triad Cu–Ag–Au. I. The Cu–Ag system. J Phys Chem 60:108–111CrossRef
    38.White JL, Orr RL, Hultgren R (1957) The thermodynamic properties of silver–gold alloys. Acta Metall Mater 5:747–760CrossRef
    39.Oriani RA (1956) Thermodynamics of liquid Ag–Au and Au–Cu alloys and the question of strain energy in solid solutions. Acta Metall Mater 4:15–25CrossRef
    40.Timberg L, Toguri JM, Azakami T (1981) A thermodynamic study of copper–iron and copper–cobalt liquid alloys by mass spectrometry. Metall Mater Trans B 12:275–279CrossRef
    41.Tomiska J, Neckel A (1983) Knudsen cell-mass spectrometry for the determination of the thermodynamic properties of liquid copper–nickel alloys. Int J Mass Spec Ion Phys 47:223–226CrossRef
    42.Itagaki K, Yazawa A (1975) Heats of mixing in liquid copper or gold binary alloys. Trans JIM 16:679–686
    43.Witusiewicz V, Stolz UK, Arpshofen I, Sommer F (1998) Thermodynamics of liquid Al–Cu–Zr alloys. Z Metallkd 89:704
    44.Wilder TC, Elliot JF (1960) Thermodynamic properties of the aluminum–silver system. J Electrochem Soc 107:628–635CrossRef
    45.Desai PD (1987) Thermodynamic properties of selected binary aluminum alloy systems. J Phys Chem Ref Data 16:109–124CrossRef
    46.Kaufman L (1979) Coupled phase diagrams and thermochemical data for transition metal binary system-VI. Calphad 3:45–76CrossRef
  • 作者单位:Manabu Watanabe (1)
    Masayoshi Adachi (1)
    Hiroyuki Fukuyama (1)

    1. Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, 980-8577, Japan
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Materials Science
    Characterization and Evaluation Materials
    Polymer Sciences
    Continuum Mechanics and Mechanics of Materials
    Crystallography
    Mechanics
  • 出版者:Springer Netherlands
  • ISSN:1573-4803
文摘
The densities of liquid Fe–Ni alloys were measured accurately by combination of an electromagnetic levitation technique and a static magnetic field. The static magnetic field suppressed the surface oscillation of the levitated sample droplet, which reduced the experimental uncertainty in the density measurement. Densities were determined over a wide temperature range and included a supercooled region. The densities of all Fe–Ni alloys investigated vary linearly with temperature over the range of measurements. The excess volumes were slightly positive over the entire composition range. The results were discussed within a thermodynamic framework using relationship between excess volume and thermodynamic properties such as excess Gibbs energy and enthalpy of mixing. The excess volume is correlated positively with excess Gibbs energy and enthalpy of mixing for various binary alloy systems.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700